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In this paper we analyze the equilibrium phase diagram of the two-dimensional
ferromagnetic n.n. Ising model when the external field takes alternating signs on
different rows. We show that some of the zero-temperature coexistence lines dis-
appear at every positive sufficiently small temperature, whereas one (and only
one) of them persists for sufficiently low temperature.
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1. INTRODUCTION

This paper concerns the low temperature phase diagram of highly
anisotropic Ising Models; we will be concerned with the two-dimensional
Ising model with alternating field.

Let N be an even integer and 4 a torus with side N (4 is a N_N
square where the opposite sides are identified).

The Hamiltonian is

H4(_)=&
J
2

:
i, j # 4: |i& j |=1

_ i_j&
h1

2
:

i # 41

_i+
h2

2
:

i # 42

_i (1.1)

where _i # [&1, +1], _ # 04 :=[&1, +1]4, J>0, h1�0, h2�0.
41 is the union of the odd rows, whereas 42 is the union of the even

rows in 4:

41 =[x=(x1 , x2) # 4, x2 odd] (1.2)

42=[x=(x1 , x2) # 4, x2 even] (1.3)
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The partition function is

Z= :
_ # 04

e&;H4 (_) (1.4)

The phase diagram in the h1 , h2 plane at T=0 is easy to compute: it
is represented in Fig. 1. Mainly three different configurations appear as
ground states in different regions: all pluses +1

�
, all minuses &1

�
and

staggered configuration \1
�

with all pluses (all minuses) on even (odd)
horizontal lines. They are separated by the coexistence lines:

v h1>2J, h2=2J that we will call line a

v h2>2J, h1=2J that we call b

v h1=h2<2J that we will call c.

They converge in the triple point P� #(2J, 2J ) (see Fig. 1).
We will mainly analyze:

(i) the vicinities of the line a (T=0 coexistence line between \1
�and +1

�
), together with its symmetrical b (between \1

�
and &1

�
); and

(ii) the vicinities of the line c (T=0 coexistence line between \1
�and &1

�
).

Of course we will be particularly interested in the vicinities of the triple
point P� .

Fig. 1. T=0 phase diagram.
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Fig. 2. T>0 phase diagram.

As we will explain, we expect that a and b zero-temperature coexis-
tence lines will disappear at any (arbitrarily small) positive temperature
T=1�;, whereas the c line will persist at least for sufficiently low tempera-
ture. The ending point of the c line is called P*=P*(;) (see Fig. 2). We
will see that dist(P*(;), P� )<ke&;J, k being suitable positive constant.

Moreover we will be able to prove uniqueness outside a small tube
centered around [h1 , h2 : h1=h2<2J&ke&;J ]; in particular in

U=[(h1 , h2) s.t. max[h1 , h2]>2J+k$e&;J ] (1.5)

The behaviour of our model depends on how much the values of h1

and h2 differ from 2J (Fig. 3). Let us call the fields h1 , h2 ``strong'' resp.
``weak'' resp. ``marginal'' according to whether they are ``sufficiently bigger''
resp. ``sufficiently smaller than'' resp. ``approximately equal to'' the value 2J.
See Sections 2.1 and 2.2 for a detailed discussion of the case when h1

is ``strong'' and h2 is arbitrary (with the emphasis, in both Sections 2.1
and 2.2, on the ``marginal'' values of h2).

Let us outline what kind of behaviour we expect in the different
regions of parameters around the ``hook'' depicted in Fig. 4.

Let us start in the upper part of the hook, in some ``strong'' value
h1=h2 . The picture observed there and around (in the region where both
h1 and h2 are sufficiently bigger than 2J ) can be suitably described using
the language of so called ``rods''. These objects will be defined as seg-
ments of spins having the value opposite to the ``recommended one'' in the
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Fig. 3. Phase diagram in h1 , h2 , T space.

corresponding row. (Recommended by the groundstate, which has a stripped
+�& structure in such a case.)

In the 41 lines we will thus have the ``& rods'' (introduced and
thoroughly discussed below in Sections 2.1 and 2.2) and analogously we
will have ``+ rods'' for the 42 lines. These rods are rare and almost inde-
pendent objects; more precisely there is some effective repulsion between the
neighboring & rods living in the 41 line and + rods living in the 42 line.

Fig. 4. The path in the space of parameters (``hook'').
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Concerning the above region of parameters, the reader is asked to
consult Section 4.3 where a general approach to a notion of ``segmental''
polymer model is outlined. It is not hard to apply the considerations of
Section 4.3 to these two kinds of ``rods''. We do not study this region of
parameters in detail in this paper; however its discussion is slightly easier
than that of our main case of strong h1 and arbitrary, but most inter-
estingly marginal (around 2J ) values of h2 , which is really the most
delicate one.

So we concentrate our discussion on the latter case. Then the concept
of a + rod, as a ``rare'' event in the 42 line, has to be abandoned. (In fact,
we will see that plus spins will prevail in 42 for sufficiently weak h2 fields.)
However, the concept of a & rod in 41 still plays a decisive role in our
investigation.

In Section 2.1 we show that we have the following picture, for h2

reaching from above the value 2J: for a typical configuration, one observes
rare & rods, denoted as r, in 41 surrounded almost always by minuses
above and below in what we will later call r̂. These minuses in r̂"r will force
the remaining nearby 42 spins to take mainly the minus value even for the
external field h2 being slightly below the value 2J (where, we recall, pure
plus is already the ground state).

However, our leading strategy in 2.1 and also in 2.2, is not to look at
the details of the behaviour in 42 (outside of the intersection of 42 with the
union of all r̂).

The approach of Section 2.1 will be applicable for all strong and
marginal values of h2 but the really delicate case is the latter one. When
further lowering h2 to the marginal values around 2J and below we enter
another region, studied in Section 2.2.

The approach we use there will be applicable both to the weak and
(more interestingly, too) the marginal values of h2 . Here we will have, for
values h2 sufficiently lower than 2J, a different picture in 42 . This picture
is quickly, but smoothly changing with the change of the (marginal) value
of h2 . Namely, the picture one observes, for a weak field h2 , can be
described as only a short range influence of the 41 rods (which are always
rare) on the behaviour in the 42 lines.

Thus, we get mainly plus spins in the points of 42 which are far from
the rods. Again, we do not want to look at the details of the behaviour of
the spins in the 42 lines (outside of the ``& appendices'' going out of r and
described in Section 2.2).

So we expect a quick but smooth jump in the mean magnetization in
the 42 lines for the marginal values of h2 .

Let us summarize the previous discussion by formulating, in somewhat
more precise terms, our main result. It will be a direct corollary of
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Theorem 2.8. The latter theorem states the existence of a convergent cluster
expansion, with an exponentially fast decay, for the partition function of
the model in the region of a ``strong'' filed h1 and h2�2J. It is an easy
modification of Theorem 2.6, already giving the basic estimates. Let us
explain the meaning of the notation used in Theorem 2.6 (for a detailed
information, see Section 2.1). We will denote by 1 ``polymers'' namely the
maximal connected components of ``rods'', ``protuberances'', ``appendices''
and also artificial ``bonds''; all these objects are described in detail below.
A ``rod'' is just an isolated segment of minuses in the 41 lines; appendices
resp. protuberances give some additional information on the configuration
in the immediate neighborhood of a rod (typically we will have the ``recom-
mended'' value��there, i.e., the empty appendix and no protuberances); on
the other hand the ``bonds'' are objects arising when expanding the parti-
tion functions of one dimensional regions (``horizontal gaps'') between the
rods; more precisely regions between the connected ``conglomerates'' of
rods, protuberances and appendices #. Concerning bonds, one can think of
them as of some artificial ``particles'' realising the ``interactions'' between
the conglomerates. (In the terminology of Dinaburg and Sinai, we work
with a situation where ``counter models with an interaction'' appear.)

The leading idea of our investigation��summarized by Theorem 2.8��
is that rods and more generally the conglomerates # are the very objects
around which the whole analysis of the model should be organized. We
emphasise that Theorem 2.8 has to be complemented by results of Sec-
tion 2.2 where analogous, suitably adapted considerations are made for the
field h2�2J. We construct another cluster expansion there for the partition
functions of the model for suitable �.

Both these methods overlap at h2=2J, h1>2J+�. They are based on
a notion of rod, which has the same meaning in both approaches.
However, other accompanying geometrical notions like protuberance and
appendix have a different meaning in Section 2.2. Also the ``bonds'' are dif-
ferent in both approaches: the ``gaps'' between conglomerates are marked
by & boundary condition in Section 2.1, and + b.c. in Section 2.2.

The existence of a convergent cluster expansion, with exponentially
decaying terms, stated in Theorem 2.8 for h2�2J and analogously in
Section 2.2 for h2�2 implies the following result. the quantity � will be
specified later; it is of the order exp(&;J ).

Main Result (Case of ``Strong'' Field h1>2J+� and Any h2).
Assume that the temperature T is small enough. Then there is a unique
Gibbs state of the model (1.1). Its configurations have the following struc-
ture: the rods in the 41 lines appear with a very small probability and there
is an exponential decay of correlations between them. Thus the mean
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magnetization m1 in any 41 line is the same for all the 41 lines and is
almost equal to 1. The means magnetization m2 any 42 line has a value
close to &1 for the ``strong'' values h2>2J+�. It grows slowly as h2

decays to 2J; still having a value negative at h2=2J. When further lowering
h2 below the value 2J, the magnetization m2=m2($) starts to grow very
quickly as a function of $ :=2J&h2 , crossing the value 0 at some $0r

exp(&;J ) and finally attaining values almost equal to 1 at $>>exp(&;J ).
Both quantities m1 and m2 are analytic functions of the parameters h1 ,

h2 , T, J.
As already mentioned above, the proof of this result follows from

results of Section 2.1 and 2.2.
A complementary result is stated in Section 3 where we prove a phase

transition along the segment h1=h2<2J&�; see Theorem 3.1 (which is
commented below).

Let us also outline the phase behaviour in the rest of the parameter space
depicted in Fig. 4��though we do not formulate precise results in this paper.

When further lowering the value h2 to ``weak'' values significantly
below 2J, the minuses in 42 not attached to some rod start also to be very
rare. The segments of these minuses deserve also a special name. Let us call
them ``twigs'' here. (The segments of minuses attached to rods are called &
appendices in the Section 2.2.)

Thus the picture for weak h2 (well below 2J ) is the following one. Not
only the rods (with minus values of spins being typically extended to the
neighborhood, in 42 , of these rods), but also the ``twigs'' appear only scar-
cely in the 42 lines. However, it is now the value 2J&h2>0 which will be
``responsible'' (for weak and marginal h1) for the fact that these twigs (and
rods, too) are sufficiently damped.

Thus we have essentially a low temperature gas of ``legs'' of two kinds:
extended rods (of minuses centered in the 41 lines) and segments, called
twigs, of minuses ``unprotected'' by some rod. The latter live in the 42 lines.
Both these objects are rare for h2 well below 2J and they allow, for h2 suf-
ficiently weak and at the same time sufficiently smaller than h1 (so that the
energy of the pure + ground state would remain well below the energy of
the pure &!), a description by low temperature cluster expansion.

We notice that the twigs in the 42 lines are much more frequent than
rods, though also sufficiently damped if h2 is kept sufficiently weak. The
rods centered in 41 are rare as always (in the considered region of param-
eters h1 , h2) however their control is now possible, even when lowering the
value h1 below 2J, because it is the quantity h2 which is held sufficiently
smaller than 2J. However, this last case is not discussed in detail our paper.
In fact, the situation here is again a little bit less delicate than in our main
case of marginal values of h2 (and strong h1).
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Now, having kept h2 considerably smaller than 2J and lowering the
value of h1 down to the value h2=2J and then further in direction to the line
h1=h2 we approach the region where another ``local ground state'' namely
the pure & configuration has to be also taken in account. What happens?

When finally reaching the region of weak fields around h1=h2 , it is
necessary to use another approach. In fact, the control over the large (in
the horizontal direction) islands of minuses in the pure plus ground state
(up to now, these islands were viewed as conglomerates of rods and twigs)
is now lost. There is, in fact, a strong attraction of the rods in such a weak
field regime. So yet another approach is needed.

However, we can ``glue'' together our twigs and (extended) rods r� into
connected components, and look only at the boundaries of these com-
ponents. Then we come to the picture of usual Ising contours, and this
turns out to be an appropriate approach in the region where h1 and h2 are
roughly the same. Indeed, as we describe it in Section 3, it is then possible
to apply a variant of the usual Peierls argument.

The difficulty is that for our ``segmental'' contours (having a consider-
able energy only around the verticals) the summation over contours is a
more delicate problem than in the usual isotropic case. Nevertheless we
prove that at the axis h1=h2 we have a phase transition.

We emphasise that in Section 3 we consider only the case of the line
h1=h2 . We completely omit the surrounding region where, of course, we
expect the uniqueness. However, a rigorous proof of this fact is postponed
to some future work.

Let us summarize once again the expected phase behaviour along our
itineration in the h1 , h2 plane shown in Fig. 4. While the picture in the 41

lines (where we observe mainly pluses!) is almost constant (namely rare &
rods) and changing smoothly (even analytically) during our whole path,
the behaviour in the 42 lines has (for a strong field h1>2J ) a smooth but
quick jump (from the prevailing value & to the prevailing value +)
slightly below the value h2=2J.

We emphasize that the most difficult case to deal with in the unique-
ness region U (see (1.5)) is the halfline h2=2J, h1>2J+ke&;J. (Of course,
by symmetry, the half-line b: h1=2J, h2>2J+ke&;J can be treated in the
same manner.)

We determine �>0 such that around the half-line h2=2J, h1>2J+�
we have uniqueness of the infinite volume Gibbs measure, decay of correla-
tions and other typical properties of the one-phase situation. The central
point of our analysis is to evaluate how close to the ``triple point''
h1=h2=2J we can go, still remaining in the uniqueness region.

In order to prove uniqueness we use a perturbative approach. We will
show that for h2=2J, h1=2J+�, with �=}e&J;, }, being a suitable
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positive constants, our system will exhibit a behaviour close to the one of
``reference system'' where the spins on the odd rows of 41 (where the exter-
nal magnetic field takes the positive value h1=2J+�) are ``frozen'' to the
value +1 whereas on the even rows in 42 , we have a set of independent,
one dimensional, zero-field systems. The heuristic argument for this is the
following one: due to the excess � of the external magnetic field on the odd
rows in 41 w.r.t. the maximal negative molecular field created by contigu-
ous spins in the even rows in 42 , we have that, at very low temperature,
the spins on 41 will tend to be positive with overwhelming probability.
Then the spins in 42 will typically feel a vanishing effective field (given, on
each site x # 42 , by the sum of the negative external magnetic field &2J
plus the molecular field 2J generated by the two positive spins in 41

nearest neighbours to x); thus on the rows of 42 we will have one dimen-
sional, zero field, Ising systems, which are independent from each other
since they are separated by +1 rows in 41 . In the real situation we will
certainly have some remarkable differences w.r.t. this extreme situation: the
main perturbation, at any small but positive temperature, that we will
observe with probability of the order e&;J will be the presence of rare
segments of minus spins on the odd rows in 41 ; they are called ``rods''. The
possibility of the appearance of the rods on 41 will break the independence
of the even rows inducing a ``communication'' between them.

Our strategy will be based on the use of the methods of cluster expan-
sion. We will perturbatively treat the rods and we will evaluate the effective
interaction between two contiguous rods due to the presence of finite
volume zero field one dimensional Ising systems on the segments in 42

between them. This effective interaction will turn out to decay exponen-
tially fast on the scale of the correlation length of the zero-field one dimen-
sional Ising system. This correlation length is easily seen to behave, for
large ;, as eJ;. There will be a competition between the typical density of
the rods and the rate of decay of their effective interaction; this will imply
a relationship between the minimal possible value for � and the correlation
length of the one dimensional zero field Ising model.

In Section 3 we will show coexistence in the c line h1=h2<2J&
ke&;J. The heuristics for this result is the following one: on this line our
model behaves similarly to the anisotropic Ising model with vertical coupl-
ing constant J1=J and horizontal coupling constant J2=J&h�2. Namely
a kind of a suitably adapted Peierls argument can be applied there.
However when J2 is exponentially small in ; the typical Peierls contours
become almost one-dimensional and the summation over the activities of
contours requires some more care than usually for small J2 . (In fact, for
very small J2&h2 , h=h2=h1 we expect a second order phase transition
but we are unable to prove it rigorously.)
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Thus to show the existence of a phase transition via the Peierls argu-
ment, we describe the configurations in terms of contours. We first make
a comparison with the above mentioned anisotropic Ising model and then
we perform the sum over the corresponding contours (passing through a
fixed point) in such a way to exploit the almost one-dimensionality of the
contours.

Technically, the main novelty of our paper is a use of cluster expan-
sion techniques in situations where strongly anisotropic, ``segmental''
polymers appear. In Section 4 we give some general outlook of such
polymers, expecting that in future work such a general approach could be
useful. We also found a new, indeed very elementary proof of the basic
cluster expansion result of Kotechky� and Preiss (which is used several
times throughout our paper). We explain it in Section 4.1. The region of
parameters in the immediate vicinity of the triple point h1=h2=2J (up to
a distance rexp(&;J )) is left open in our paper. apparently, other techni-
ques (percolation, exact solutions?) are required to understand rigorously
the model for these values of parameters. This is an interesting (and dif-
ficult) object for further study.

2. UNIQUENESS REGION

2.1. The Region h1>2J+� and h2>2J&$, $;�e&;J, �>>e&;J

We will start analyzing the partition function of our system enclosed
in a finite volume with periodic boundary conditions. We will transform
our original system into a gas of polymers with small activity. Then, by
using general methods of the theory of cluster expansion, we will be able
to perform the thermodynamic limit. By similar arguments we will also be
able to analyze the correlation functions and prove uniqueness of the
infinite volume Gibbs measure as well as decay of truncated correlations.

We will show, and this will be the main result of Section 2, that our
partition function can be expressed as

Z=Z� 5 (2.1)

where Z� is a simple term representing the partition function of our
reference system whereas 5 is the partition function (Lemma 2.2) of a gas
of polymers with small activities (Theorem 2.8).

Let us start our computation of the partition function.
We first introduce the approach convenient to describe the region

above the line a given by: h1>2J, 2J=h2 ; it can be pushed also a little

96 Nardi et al.



under the line. Indeed we have the limitation that $=2J&h2 is either
negative or, if positive, it has to be less than (1�8;) = where

==e&;J (2.2)

and �=h1&2J. The staggered configuration _\ is given by

_\(x)={+1 x # 41

&1 x # 42

(2.3)

We write

Z= :
_ # 04

e&;(H(_)&H(_\)) (2.4)

indeed in the region of parameters that we are presently considering, we
take as reference configuration the staggered one _\ so that in (2.4) we are
subtracting H(_\). In the other region (h1>2J, h2<2J ) we will substract
H(+1

�
) (see (2.82) below).

Definition 2.1. Given _ # 04 , a maximal connected component
(segment) of &1 spins in 41 is called rod; for x # 41 , l # N, we denote
by rx, l the rod whose extreme left point is x=(x1 , x2) and whose length
(cardinality) is l

rx, l=[y=( y1 , y2) # 41 | x1� y1�x1+l&1 and y2=x2] (2.5)

We use the same symbol rx, l also to denote the union of unit cubes
centered at the sites in rx, l .

Definition 2.2. Two rods rx 1, l1
and rx 2, l2

are incompatible if they
intersect:

rx 1, l1
& rx 2, l2

{< (2.6)

We will call R4 the set of all possible rods (with any size and location)
in 41 . Given _ # 04 we denote by L(_) the family of coordinates of com-
patible rods generated by _. We write:

L(_)=[(x1, l1) } } } (xn, ln), rx j, lj
is a rod in _ ] (2.7)
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Let

L� = .
(x, l ) # L(_)

rx, l (2.8)

be the support of the set of rods rx, l such that (x, l ) # L(_); notice that,
whereas this set of rods is an element of (R4)n, for some n, L� is a subset
of 41 . We denote by

L=[L(_): _ # 04] (2.9)

the set of all possible families of compatible rods in 41 . We call _(rx, l ) the
configuration _ where the &1 spins are precisely the ones in rx, l and in 42 ;
`(rx, l ) is the weight (or activity) associated to the rod rx, l . We get

`(rx, l ) :=e&;[H(_(rx, l ))&H(_\)]==2e&�l (2.10)

We recall that ==e&J;. In what follows we will choose �=}= for some
positive constant }. We have:

Z4= :
n�0

:
L=[(x 1, l1 ) } } } (xn, ln )] # L

_`
n

j=0

=2 exp(&;�lj )& Z[L]
42

(2.11)

where we use the convention that if n=0 then �L is absent, while
>0

j=0=1. Z[L]
42

denotes the partition function on 42 with boundary con-
ditions given by &1 on L� and +1 elsewhere. Again for n=0 we set L� =
�0

j=0 rx j, lj
=<.

Definition 2.3. We call 42 -enlargement of a rod rx, l , and denote it
by r̂x, l , the set of sites immediately above and below rx, l (x=(x1 , x2)):

r̂x, l=[y=( y1 , y2) # 42 | x1� y1�x1+l&1 and y2=x2\1] (2.12)

We set

r� x, l=r̂x, l _ rx, l (2.13)

and call it extended rod.
Let us denote by E(rx, l ) the set of four extreme points of r̂x, l :

E(rx, l )=[(x1 , x2\1); (x1+l&1, x2\1)] (2.14)

98 Nardi et al.



Given _ # 04 , we denote by C(_) the set of maximal connected com-
ponents (segments \/42) of +1 spins in 42 that have non-empty intersec-
tion with some r̂x, l . We emphasize that for any h2>0, if we suppose that
the spins in rx, l are &1, then the typical value of the spins in r̂x, l will be
also minus. With this in mind we introduce the following definitions.

Definition 2.4. Given _ # 04 , we call protuberances and denote by
p the components \ completely contained in r̂x, l "E( r̂x, l ) for at least one
(x, l ) # L(_). We denote by P(_) the set of all protuberances appearing in
the configuration _:

P(_)=[\ # C(_) : _(x, l ) # L(_): \/ r̂x, l "E( r̂x, l )] (2.15)

Definition 2.5. We call appendices of _ and denote by a the other
components \ in C(_). A(_) is the set of appendices appearing in _

A(_)=C(_)"P(_) (2.16)

Definition 2.6. Two elements a, a$ (appendices), p, p$ (protuber-
ances), a, p are incompatible if they intersect.

Remark 2.1. Every appendix contains at least one site in E(rx, l )
for some rod rx, l ; thus we can write, for the length |a| of an appendix a;

|a|=l1+l2

where l1�1 is the length of the part of a contained in r̂x, l for some (x, l )
whereas l2�0 is the length of the rest (part of a outside any r̂x, l ).

We set:

\a # A(_): |a|=l1+l2 `0(a)==2(=2 exp($;)) l 1
exp($;) l2 (2.17)

\p # P(_): | p|=l `0( p)==2(=2 exp($;)) l (2.18)

We recall that $=2J&h2 is positive below the line a, but negative above.

Definition 2.7. Given L # L, a pair of families A, P of (com-
patible) appendices and protuberances is called ``L-compatible'' if there
exists _ # 0 such that L(_), A(_), P(_)=L, A, P. We denote by A� , P� /42

the supports of A, P, respectively:

A� = .
a # A

a P� = .
p # P

p

99Ising Model with Strongly Anisotropic External Field



The set of all families of appendices and protuberances (A, P) compatible
with L is denoted by

(A(L), P(L))=[A, P: a, a$ # A, p, p$ # P, a, p # (A, P)

are pairwise compatible and L-compatible] (2.19)

Given a compatible set L, A we denote by A� the extension of A� to the
nearest neighbour sites in 42 not contained in any r̂x, l with (x, l ) # L:

A� =A� _ {y # 42 : dist(y, A� )=1, y & \ .
(x, l ) # L

r̂x, l +=<= (2.20)

if A� =< we set A� =<. We can write:

Z4= :
n�0

:
L=[(x1, l1 ) } } } (x n, ln )] # L

_`
n

j&0

=2 exp(&;�lj )

_ :
(P, A) # (P(L), A(L))

`
p # P

`0( p) `
a # a

`0(a) Z[L; A; P]
42 & (2.21)

where Z[L; A; P]
42

is the partition function in 42"[A� _ (�x, l # L r̂x, l)] with +
boundary conditions on the contiguous sites on 41 and & boundary con-
ditions on the contiguous sites in 42 .

Then Z[L; A; P]
42

splits into the product of partition functions of one
dimensional Ising systems with external field $ on some intervals in 42 with
& boundary conditions on their extrema. Given L, A, P we set: 42"
[A� _ (�x, l # L r̂x, l)]=�j gj . The gj are disjoint intervals that lie in 42

between pairs of sites which are either extreme points of extended
appendices in A� or extreme points of some r̂x, l . This latter case corre-
sponds to saying that in y # E(rx, l) we have _( y)=&1.

The interior sites of the intervals gj are free and we are going to sum
up over their values obtaining, in this way, the partition function of a
$-field, one dimensional Ising model on an interval of length l with &1
boundary condition. Given L, A, P we denote by G(L, A, P) the set of the
above defined intervals [gj ]. In what follows we will denote by Z{, {$

l ($, &)
the partition function of a one dimensional Ising model on the interval
[1,..., l ] with external field $, and {, {$ boundary conditions when the
reference configuration (zero of the energy) is &1

�
(all minuses)

Z{, {$
l ($, &)= :

_ # [&1, +1]l

e&;[H(_ | {{$)&H(&1
�

| {{$)] (2.22)
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where

H(_ | {{$)=&
J
2

{_1+
J
2

:
l&1

i=1

_i_ i+1&
J
2

{$_l&
$
2

:
l

i=1

_ i (2.23)

Proposition 2.1. There exist constants c1($, {, {$), c2($, {, {$)

Z{, {$
l ($, &)=c1($, {, {$) * l+1

0 \1+c2($, {, {$) \*1

*0+
l+1

+ (2.24)

where

*0, 1=
1+e$;

2
\�(1+e$;)2

4
+e(&2J$ ) ; (2.25)

If the externa field is $=0 and {={$=&1, we have *0=1+=, *1=1&=
and c1(0, {, {$)= 1

2 , c2(0, {, {$)=1.

Proof. The proposition follows from an elementary computation,
based on the transfer matrix. Indeed in the case of periodic boundary con-
dition one has Z per($, &)=Tr A l ($, &) where

A($, &)=\ e ;$

e($�2&J ) ;

e($�2&J ) ;

1 +
is the corresponding transfer matrix. While for a generic boundary condi-
tion {, {$ outside [1,..., l ] one has

Z{, {$
l ($, &)=(v{ , Al ($, &) v{$)

where v{ , v{$ are suitable vectors. See also Section 4.2 for different deriva-
tion. K

Using Proposition 2.1

Z�
l ($, &)=c1($, �) * l+1

0 \1+c2($, �) \*1

*0+
l+1

+ (2.26)

This sum over the values of the spins on the sites of 42"[A� _ (�x, l # L r̂x, l)]
gives rise to an effective interaction between pairs of rods.
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We want now to put a factor *0 in evidence for each site in 42 in the
r.h.s. of (2.21); we get

Z4 =*N 2�2
0 { :

n�0

:
(x1, l1 ) } } } (x n, ln ) # L

_`
n

j=0

=2 exp(&;�lj ) \ 1
*0+

|�x, l r̂x, l |

_ :
(P, A) # (P(L), A(L))

\ 1
*0+

|A� "A� |
`

p # P

`( p) `
a # A

`(a) `
g # G(L, A, P)

`(g)&=
(2.27)

where

`( p)=`0( p) \ 1
*0+

l

==2 \=2 exp($;)
*0 +

l

(2.28)

`(a)=`0(a) \ 1
*0+

l2
==2(=2 exp($;)) l1 \exp($;)

*0 +
l2

�=2(=2 exp($;)) l1 \1&
3
4

=+
l2

(2.29)

`(g)=c1 *0 \1+c2 \*1

*0+
| g|+1

+ (2.30)

The last inequality in (2.29) comes from our choice $;<=�8. Of course
for negative $ we could have much better estimates but our emphasis is on
$=0.

Let us call ``leg'' an element that can be a rod, a protuberance or an
appendix.

Remark 2.2. Notice that the number of factors (1�*0) that we get
in (2.24) depends on the overlapping between the r̂x, l ; this induces an
(effective) interaction between rods; a similar effect takes place also for the
other kinds of legs, thus, it makes sense to give the following definitions.

Definition 2.8. Two compatible rods rx1, l1
, rx 2, l2

are interacting if
the intersection between their 42 -enlargements r̂x1, l1

, r̂x 2, l2
is non-empty:

r̂x1, l1
& r̂x 2, l2

{<.

Definition 2.9. A compatible pair given by a rod r and an
appendix a (or a protuberance p) is interacting if the intersection between

102 Nardi et al.



the appendix a (or the protuberance p) and the 42 -enlargement of the rod
r is non-empty: r̂x1, l1

& a{<.

Definition 2.10. Two compatible appendices a, a$ are interacting if
there exist a site x # a and a site y # a$ such that d(x, y)�2.

We use symbol I to denote interaction; for example rIa means that
the rod r interacts with the appendix a.

We now develop the product >g # G(L,A,P) (*0�2)(1+(*1 �*0) | g|+1).
A single term of the development will correspond to a choice of the term
1 or (*1 �*0) | g| +1 for each g # G(L,A,P).

Given a term of the above development we will call bond and denote
by b those among the intervals g which old the term (*1 �*0) | g|+1. The
activity of a bond b is

`(b)=c2($, �) \*1

*0+
|b|+1

�(1&=+o(=)) |b|+1�\1&
7
4

=+
|b|+1

(2.31)

Notice that `(b) has an expression partially similar to `(a) but without the
prefactor =2. Geometrically a bond is a generic interval in G(L,A,P); we
can write:

Z4 =*N 2�2
0 { :

n�0

:
(x1, l1 ) } } } (x n, ln ) # L

_`
n

j=0

=2 exp(&;�lj ) \ 1
*0+

�x, l r̂x, l

_ :
(P, A) # (P(L), A(L))

\ 1
*0 +

|A� "A� |

`
p # P

`( p) `
a # A

`(a) *0c1($, �) |G(L, P, A)|

_ :
B/G(L, P, A)

`
b # B

c2($, �) \*1

*0+
|b|+1

&= (2.32)

Definition 2.11. A rod r and a bond b are interacting if there exist
a site x # r and a site y # b such that d(x, y)=- 2.

Definition 2.12. An appendix a and a bond b are interacting if
there exist a site x # r and a site y # b such that d(x, y)=2.

The above notions of interactions will be now used to define particular
collections of legs and bonds.

Definition 2.13. Given a compatible set L, A, P, a ``conglomerate''
# is a maximal connected component of interacting legs.
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We are now ready to give the basic definition of polymer.

Definition 2.14. Given a compatible set L, A, P, and a set B of
bonds in G(L, A, P), a polymer 1 is a maximal component of interacting
rods, appendices, protuberances and bonds.

Definition 2.15. For each rod we can define four corners: at the
top to the left, at the top to the right at the bottom to the left and at the
bottom to the right.

We call ``vertex'' a generic site belonging to a leg or to a bond; the
support 1� of a polymer 1 is the union of its vertices.

Given a rod rx, l , we denote by C(rx , l ) the set of its (four) corners c.
To any c we can associate a site y(c) # E(rx, l): the one which is contiguous
to c; this correspondence is one to one when l�2.

Given (L, A) we denote by C� (L, A) the set of corners c belonging to
a rod in L such that the corresponding y(c) is connected to some interval
g or belongs to some appendix a # A(_) connected to some g.

Given a conglomerate # we call

L(#)=[(x, l ): rx, l # #]

similarly, by A(#), P(#), we denote the set of appendices, or protuberances,
respectively, belonging to #. We have

`(#)= `
(x, l ) # L(#)

[`(rx, l)(- *0c1($, �)) |C(rx, l ) & C� (L, A)|] \ 1
*0+

|�x, l r̂x, l |

_\ 1
*0+

|A� "A� |

`
p # P(#)

`( p) `
a # A(#)

`(a) (2.33)

Remark 2.3. A conglomerate is nothing but a polymer 1 contain-
ing no bonds.

Given a polymer 1, containing the conglomerates #1 ,..., #n and the
bonds b1 ,..., bm , the weight of 1 is given by

`(1 )= `
n

i=1

`(#i ) `
m

j=1

`(bj ).

Using the above definitions of polymer and interaction we are now able to
express our partition function as the one of a gas of polymers. We sum-
merize our result in the following:
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Lemma 2.2. Z4 can be expressed as:

Z4=Z� 4 54 (2.34)

with

Z� 4=*N 2�2
0 54=1+ :

n�1

:
11 } } } 1n

`(11) } } } `(1n) (2.35)

where, the sum on the r.h.s. of the (2.35) runs over all families 11 ,..., 1n of
polymers in 4 such that for any i, j, 1i do not interact with 1j .

We will now look at a polymer 1 as a graph whose nodes are con-
glomerates and whose connections are given by bonds. Notice that every
bond b has to be connected at each one of its two extremes to a rod or to
an appendix belonging to some conglomerate. It may happen that a bond
connects two vertices of the same conglomerate. In this case we say that we
have an internal bond. Notice that, the polymers 1, seen as graphs com-
posed by conglomerates and bonds, do not have in general a tree structure,
since they can contain loops. In particular every internal bond gives rise to
a loop. It turns out that the difficult part in the computation of the sum
over all polymers (passing throught a fixed point) comes form the bonds.
In order to be able to control the contribution of the bonds, we reorganize
the sum over the polymers in such a way to associate to every bond one
conglomerate, whose weight is so small to compensate the (large) result of
the sum over the bonds. To achieve this purpose it happens that it is useful
to introduce a tree structure.

Lemma 2.3. Given a polymer 1 we can find a tree T/1 (which is
in general not unique) obtained from 1 by removing some bonds in 1.

Proof. We will use a hierarchical construction. We choose a vertex v
belonging to a conglomerate #1/1. Then we consider all conglomerates
that are connected to #1 by some bonds and we denote them by [#2

1 } } } #2
k2

].
They constitute the ``second generation''. We can iteratively define the
subsequent generations. Given the j th generation [# j

1 } } } # j
kj

], we define the
( j+1) th generation by talking all conglomerates that are connected at
least by a bond to some conglomerate belonging to the j th generation but
not connected to any conglomerate belonging to some previous generation.

This hierarchical description provides a criterion to remove the bonds
in order to obtain a tree T out of 1. All bonds that connect the first with
the second generation belong to the tree. Starting from j=2, we consider
the conglomerates of the j th generation and we remove from 1 all internal
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bonds and all bonds that connect pairs of conglomerates both belonging to
the same j th generation. In order to get a tree structure, we want that any
conglomerate of the ( j+1)-st generation is connected by a single bond to
a single conglomerate of the j th generation. so if in 1 there is more than
one bond connecting a given conglomerate # j+1

k (of the ( j+1)-st genera-
tion) to �m # j

m (the set of conglomerates of the j th generation), we keep in
T the first one in lexicographic order (of the first extremum) and remove
all the others. It is clear that, continuing in this way, we end up with a
tree. K

Given a polymer 1, we call T(1 ) the tree T obtained via the above
construction.

Remark 2.4 We know that the tree T contains all conglomerates
of 1, so the possible positions of the removed bonds is fixed.

Given a tree T, we can obtain each graph 1 such that T(1 )=T by
deciding whether or not we put a bond between a pair of corners of rods
(that may be connected by a bond) belonging to the same or to two
conglomerates. We can think to have introduced a dichotomic variable {
taking the value 1 if we add the bond, and zero if we do not add the bond.

Let us denote by nr(#) the number of rods in #.

Lemma 2.4.

:
1: T(1 )=T

`(1 )�`(T ) `
# # T

34nr (#) (2.36)

Proof. There are at most 24nr (#) choices of the set of bonds that we
need to add to the tree in order to obtain a graph 1 such that T(1 )=T.

We have

:
1: T(1 )=T

`(1 )=`(T ) :
1: T(1 )=T

`(1"T )

�`(T ) `
# # T

(1+24nr (#) max
b

`(b))

�`(T ) `
# # T

34nr (#) `
# # T

1
34nr (#) \1+24nr (#) \1&

7
4

=++
�`(T ) `

# # T

34nr (#) K (2.37)
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Given t>1, we introduce the modified weight `t(#) of `(#) (see (2.33))
given by

`t(#)= `
(x, l ) # L(#)

_t`(rx, l)(- *0c1($, �)) |C(rx, l ) & C� (L, A)| \ 1
*0+

|�x, l r̂x, l |

_\ 1
*0+

|A� "A� |

`
p # P(#)

`( p) `
a # A(#)

`(a)& (2.38)

This ``worsening'' parameter t is introduced in order to subsequently con-
trol some entropic factors; the ``worsened'' activity `t represents an upper
bound for the result of some partial sum. This will appear clear during the
proof of the Theorem 2.6 (see, for instance (2.58) below). Notice that in
(2.38) we multiplied the weight `(r) by a factor t and we left the other
weights unchanged. (One has `(#)=`1(#)) In the following Lemma 2.5 we
perform the main step (and simplified version) of the Theorem 2.6.

Lemma 2.5. For every t: 0<t<��10= and site x # 4 we have for =
sufficiently small

:
#: #~ % x

`t(#)�16t(1+=2)4 =2

�
(2.39)

Proof. First we compute the sum over all conglomerates containing
a vertex x belonging to 41 and then we extend this result to the vertices
in 42 .

We remark that, given a site x # 41 , a conglomerate # can contain x
only if there exists a rod r # # containing x a sone of its vertices. To com-
pute this sum we use a hierarchic construction. Notice that we do not have
a tree structure inside the conglomerates and now we only have legs (and
no bonds): we simply use a method of sum which is reminiscent of a tree
organization of the connections inside the graph given by a conglomerate.
We take the rod that contains x and we call it r0 : it is the zeroth generation.
We construct the 1-st generation taking all the legs that interact with r0 .
So, by iteration, we construct all generations: if we have the j th generation
we construct the ( j+1) th generation by taking all the legs that are interac-
ting with the legs of the j th generation, but not interacting with the legs
belonging to the previous generations. Let us suppose that the number of
generations is M.

In the zero generation we have only r0 . In the subsequent j th genera-
tions, j>0 we have

a j
1 } } } a j

hj
appendices; p j

1 } } } p j
kj

protuberances; r j
1 } } } r j

nj
rods
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We denote by C(r (h)
i ) the set of our corners of the i th rod of the h th

generation.

C0=C(r0); R� 0=r0 ; C1(r)= .
n1

i=1

C(r (1)
i ); R� 1= .

n1

i=1

r (1)
i ;

A� 1= .
h1

i=1

a (1)
i P� 1= .

k1

i=1

p (1)
i } } } CM(r)= .

nM

i=1

C(r (1)
i ) (2.40)

R� M= .
nM

i=1

r (M )
i A� M= .

hM

i=1

a (M )
i P� M= .

kM

i=1

p (M )
i

We want to estimate, for ; sufficiently large, the weight of a conglomerate
# as a product of independent weights associated to the single constituents
of # (rods, appendices, protuberances). We introduce the quantity �̀ t(r, L, A)
defined by:

`t(r) t(- *0c1($, �)) |C(rx, l ) & C� (L, A)|

=:
1
2

�̀ t(r, L, A)([e&��3]2) l \ 1
1+=2+

4

(2.41)

From (2.10), (2.2) we get

�̀ t(r, L, A)� �̀ (r) :==2t(e&��3) l 2(1+=2)4 \*0

2 +
2

�=2t(e&��3) l 2(1+=2)4 (2.42)

The factor (1+=2)&4
r1 is introduced to control the sum over the

appendices (see (2.50) below). Let a be an appendix, we introduce �̀ (a)
defined by

`(a)=:
1
2

�̀ (a) _1&
1
8

=&
2l

(2.43)

From (2.29) and (2.43) we get

�̀ (a)�=2(=2 exp($;))l1 2 _1&
1
2

=&
l2

(2.44)
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Given a protuberance p, we introduce �̀ ( p) defined by

`( p)=:
1
2

�̀ ( p) \1
2+

2 | p|

(2.45)

from (2.28) and (2.45) we get

�̀ ( p)�=22[4=2 exp($;)] | p| (2.46)

In (2.43), (2.45), (2.41) we have extracted from the weights `(a), `( p),
t`(r), a factor (1& 1

8 =)2, ( 1
2)2, e&(2�)�3, respectively, that we associate to the

vertices; this amounts to worsen (increase) the weight from ` to �̀ . More-
over we extract another factor 1

2 that we will use to control the sum over
the number of generations. In (2.46)�(2.48), we estimate the sum of �̀ over
the various legs containing a fixed vertex. For the appendices we have:

:
a % v*

�̀ (a)�2=2 :
�

l1 =1

(=2e$;) l1 :
�

l2 =0 \1&
1
2

=+
l2

=2=2 :
�

l1 =1

(=2e$;) l1
2
=

=4=
=2e$;

1&=2e$; =4=3e$;(1+=2e$;+o(=2))�8=3e$; (2.47)

For the rods:

:
r % v*

�̀ (r)�2=2t(1+=2)4 :
�

l=1 \1&
1
4

�+
l

�8t(1+=2)4 =2

�
:=c1

=2

�
(2.48)

with c1=8t(1+=2)4. Finally for the protuberances we have the following
simpler analogue of (2.47)

:
p % v*

�̀ ( p)�2=2 :
�

l=1

[=2e$;4] l=2=2 4=2e$;

1&4=2e$;�16=4e$; (2.49)

The idea that we use to compute �# % x `t(#) is the following: we first fix all
the legs of the first M&1 generations and sum over the legs of the last
generation (using the worsened weights �̀ ); the result of this sum is con-
trolled by the small damping factors <1: (1& 1

4=)2, ( 1
2)2, e&2��3, that we
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had preliminarly extracted from the original weights ` of the legs of the
previous generation. Then we proceed interatively by summing over the
legs of the M&1 generation and so on. We get

:
#: # % x

`t(#)� :
�

M=0

1
2

( �̀ (r0)) `
v # R� 0

`t(#"(A� M&1 _ P� M&1 _ R� M&1))
1
2

_ `
v # A� M&1

_\1&
1
8

=+
2

\1+ :
rIv

�̀ (r)+&
_ `

c # CM&1(r)
_ 1

1+=2 \1+ :
a % y(c)

�̀ (a)+&
_ `

v # R� M&1
_\1&

1
4

�+
2

\1+ :
rIv

�̀ (r)+ :
pIv

�̀ ( p)+&
_ `

v # PM&1
_\1

2+
2

\1+ :
rIv

�̀ (r)+& (2.50)

Using (2.47)�(2.50) and taking into account that a leg can interact with
another leg from above or below, we get

:
# % x

`t(#)� :
�

M=0

1
2

( �̀ (r0)) `
v # R� 0

`t(#"(A� M&1 _ P� M&1 _ R� M&1))

_
1
2 { `

v # A� M&1
_\1&

1
4

=+\1+c1

=2

� +&
2

`
v # PM&1

_1
2 \1+c1

=2

�+&
2

_ `
v # R� M&1

_\1&
1
4

�+\1+c1

=2

�
+16=4+&

2

_ `
c # CM&1(r)

_ 1
1+=2 (1+16=3)&= (2.51)

where v* is a fixed vertex, say the origin. If

c1

=2

�
=8t(1+=2)4 =2

�
<

1
8

= (2.52)
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all the products enclosed in the curly brackets [ ] are less than 1. Then we
iterate this procedure and we obtain

:
# % x

`t(#)� :
�

M+0

1
2

( �̀ (r0)) { `
c # C0(r)

_ 1
1+=2 (1+16=3)&

_ `
v # R� 0

_\1&
1
4

�+\1+c1

=2

�
+16=4+&

2

=\1
2+

(M&1)

� :
�

M=0
\1

2+
M

8t(1+=2)4 \=2

� +�16t(1+=2)4 =2

�
(2.53)

This concludes the proof of the Lemma for x # 41 . If x # 42 necessarily
there exists an appendix a0 (or a protuberance p0), in # which contains x;
this appendix (or protuberance) has to be connected to a rod r0 (and
throught it to the rest of the conglomerate), then #=a0 _ [#"a0] (or
#= p0 _ [#" p0])

:
# # #~ % x

`t(#)� :
a0 % x

`(a0) 2 :
# % a0

`(#"a0)�16=3 \c1

=2

�+ (2.54)

:
#: #~ % x

`t(#)� :
p0 % x

`( p0) 2 :
# % p0

`(#" p0)�4=2 \c1

=2

� + K (2.55)

Now we are ready to show that the polymer system described by the
partition function 54 (see Lemma 2.2) is, indeed, in the small activity
region. The general theory of cluster expansion allows to express pressure
((1�4) log 54) and the correlation functions as absolutely (uniformly in 4)
convergent series in the activities of the various polymers provided a
suitable condition on `'s is verified. This condition requires that �1 % 0 `(1 )
is sufficiently small. Indeed the true condition involves the existence of two
positive functions :(1 ) and d(1 ) such that �1 % 0 `(1 ) e:(1 )+d(1 ) is small.
The precise small activity hypothesis, which in Kotecky Preiss formulation,
implies convergence of cluster expansion, will be stated and proved in
Theorem 2.8.

Theorem 2.6. Let �=}=, $;<=�8 and suppose }>212 21, then
there exists a constant c2 such that for = sufficiently small:

:
1: _#/1: # % v�

`(1 )�c2

=2

�
(2.56)
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Proof. It follows from Lemmas 2.3 and 2.4 that, in order to get the
theorem, we have only to prove

:
T: _#/T: # % v�

`(T ) `
# # T

34nr (#)�c2

=2

�
(2.57)

We will use a hierarchical construction reducing the estimate of the sum of
the l.h.s. of (2.57) to the estimate of a sum over trees with modified weight.
We consider the conglomerate #(0) that contains the given site v� , and we
call it the zeroth generation. Then we consider all conglomerates # (1)

1 } } } # (1)
k1

connected by a bond to #(0); we call them the 1-st generation. Given the j th
generation, we define the ( j+1) th generation taking all conglomerates
#( j+1)

1 } } } # ( j+1)
kj+1

connected by a bond to the ones of the j th generation, but
disconnected to all (up to ( j&1) th) previous generation.

Let N be the index of the maximal generation. We call D0 the set of
corners of rods belonging to the conglomerate #(0): D0=�r # #0

C(r); we
denote, for j=1,..., N, by Dj the set of corners of rods belonging to the
conglomerates of the j th generation:

Dj= .
kj

i=1

.
r # #i

( j )
C(r)

Remark 2.5. We want to sum over the generations from the last
one to the first one. The last one (the ``leaves'' of the tree) is made of con-
glomerates; in performing the subsequent sums we exploit the particular
structure of a tree: starting from the leaves and going ``up'' to the root of
the tree we can (uniquely) associate each conglomerate to one bond. The
crucial role is played by unseparated pairs conglomerate-bond. Indeed the
sum over all bonds passing throught a given point amounts to 1�=; thus we
have to use for each bond the small weight of the (previous) conglomerate
to compensate the diverging term 1�=.

In order to estimate the quantity �T % v� `(T ) ># # T 34nr (#) we introduce
the modified weights `t1

(#) with t1=34. We have `t1
(#)=`(#) 34nr (#). More-

over we want to write the weight `t1
(#) of the conglomerate as product of

some factors and `t2
(#) as follows:

`t1
(#)=\1

2+ `t2
(#) \ 1

1+d4+
4nr (#)

with t2=342(1+d4)4 (2.58)

The factor ( 1
2) in (2.58) will be used to control the sum over the number

N of generations whereas the factors (1�(1+d4)) appearing for each corner
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c of a rod in # will be used to control the sum over the pair bond-con-
glomerate emerging from c (connected with y(c)). We have

:
T % v�

`(T ) `
# # T

34nr (#)� :
�

n=1
\1

2+_ :
#0 % v�

`t2
(#)&

_\1
2+ `

c # D0
_\ 1

1+d4 +\1+ :
#: # % c

`t2
(#) :

bEc

`(b)+& } } }

_\1
2+ `

c # DN&1
_\ 1

1+d4 +\1+ :
#: # % c

`t2
(#) :

bEc

`(b)+&
(2.59)

where by bEc we mean that the bond b ``emerges'' from the corner c. We
compute this preliminary sum

:
b: bEc

`(b)� :
�

l=1 \1&
7
4

=+
l

�
1

1&(1&(7�4) =)
�\ 4

7=+ (2.60)

Using Lemma 2 with t=t2 we have

:
#: #~ % x

`t2
(#)�32(1+=2)4 (1+d4) 34 =2

�
:=c3

=2

�

:
T % v�

`(T ) `
# # T

34nr (#)� :
�

n=1 \
1
2+ :

#0 % v�

`t2
(#)

_\1
2+ `

c # D0
_\ 1

1+d4 +\1+ :
#: # % c

`t2
(#) :

b % c

`(b)+& } } }

_\1
2+ `

c # DN&1
_\ 1

1+d4+\1+c3

7
4

=
�+& (2.61)

If

1
1+d4 \1+c3

7
4

=
�+<1 (2.62)

we can estimate the quantity enclosed in the brackets [ ] by 1. A possible
choice for d4 in order to verify (2.52) (with t=t2) and (2.62) is
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d4=
1
3

; } :=
�

=
>21121(1+=2)4 (2.63)

O :
T % v�

`(T ) `
# # T

34nr (#)� :
�

n=1
\1

2+
N

c3

=2

�
�2c3

=2

�
:=c2

=2

�

where c2=214(1+=2)4 K (2.64)

In order to develop the theory of cluster expansion (see [GLMM],
[KP], [D]) we need a suitable notion of incompatibility, between pairs 1,
1 $ of polymers. this new notion (which extends the one we already gave)
is called incongruousness and denoted by the symbol @.

Definition 2.16. Two rods which are either incompatible or inter-
acting are said to be incongruous: this happens if and only if they or their
42 -enlargement intersect:

r̂1 & r̂2{< or r1 & r2{< (2.65)

Definition 2.17. A rod r and an appendix a are incongruous if
there exist a site x1 # r and a site x2 # a such that d(x1 , x2)=1.

Definition 2.18. A rod r and a bond b are incongruous if there
exists a site x1 # r and a site x2 # b such that d(x1 , x2)�- 2.

Definition 2.19. An appendix a1 (or a protuberance p1) is incon-
gruous with another appendix a2 (or protuberance p2) if there exist a site
x1 # a1 (or a site x1 # p1) and a site x2 # a2 (or a site x2 # p2) such that
x1=x2 or d(x1 , x2)=1; or if there exists a site x3 # A� such that d(x1 , x3)=
d(x3 , x2)=1.

Definition 2.20. An appendix a (or a protuberance p) is incon-
gruous with a bond b if there exist a site x1 # a (or a site x1 # p) and a site
x2 # b such that x1=x2 or if they have horizontal distance less of equal to
two.

Definition 2.21. Two bonds b1 and b2 are incongruous if they
intersect.
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We say that a polymer 1 is incongruous with another polymer 1 $ and
we write T@1 $ if there is an element in 1 which is incongruous with an
element in 1 $.

Following Kotecky� and Preiss we want to look at a polymer model
with a new weight function given by `(1 ) e:(1 )+d(1 ) where :(1 ), d(1 ) are
positive functions that we take of the form

:(1 )= :
v # 1

:(v) d(1 )= :
v # 1

d(v)

where d(v)=(1�16) = \v # a, b, p, r and :(v) is given by

1
16 = if v # a, b, p

:(v)={c if v # r and has two corners (2.66)
1
16 = if v # r

The criterion of choice in (2.66) for the different elements a, b, p, r is the
following one: the smaller is the weight of a vertex v the larger is the term
:(v). Indeed the ending points of a rod (made by a pair of corners) carries
a small factor of the order of = so that we can attribute to them a factor
:=c whereas in the others cases we set := 1

16 =.

Corollary 2.7. Let c>o, �=}=, $;<=�8 and suppose }>21_
212e2c, then, for = sufficiently small:

:
1: _#/1: # % v1

`(1 ) e:(1 )+d(1 )�c4

=2

�
(2.67)

where c4=215e2c.

Proof. To get the result we easily adapt the argument of proof of
Theorem 2.6 to the new weights. We use the following estimates valid for
sufficiently small =. From (2.10) and (2.66) we have

`(r) e:(r)+d(r)==2e2ce&(�&(1�8) =) |r|==2e2ce&�� |r| (2.68)

with �� =�&(1�8) =. From (2.31) and (2.66) we have ( |b|=l ):

`(b) e(1�8)= |b|�_e(1�8) = \1&
15
8

=+&
l

�\1&
7
4

=+
l

(2.69)
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so that we get the same result as the one in Eq. (2.60). From (2.29) and
(2.66) we have ( |a|=l1+l2):

`(a) e(1�8) = |a|==2(=2e$;e(1�8) =) l1 \J (1�8) =

*0 +
l2

�=2(=2e$;+(1�8) =) l1 \1&
6
8

=o(=)+
l2

(2.70)

From (2.18) and (2.66), we get

`( p) e(1�8) = | p|==2(=2e$;+(1�8) =) | p|�=2(=2(1+ 1
4 =) | p| (2.71)

With the same steps of Theorem 2.6 we prove (2.67) with:

c4=214(1+=2)4 e2c and }>21 } 211e2c(1+=2)4 K

Theorem 2.8. Let c= 1
4 , �=}=, $;<=�8 and suppose }>219e1�2,

then, for ; sufficiently large:

:
1@1 $

`(1 $) e:(1 $)+d(1 $)�:(1 ) (2.72)

Proof. A sufficient condition for (2.72) is that for any v1 # 1 which is
incongruous with v2 # 1 $, there exists a vertex v~ 1 # 1 (v~ 1 can coincide with v1)
which is incongruous with v~ 2 (which, in turn, can coincide with v2) still
belonging to 1 $, and such that

:
1$: v~ 1 @1 $

`(1 $) e:(1 $)+d(1 $)�:(v~ 1) (2.73)

Case 1. v1 # 41 , so v1 belongs to a rod r1 of 1 and it is incom-
patible with a site v2 of 1 $. The site v2 # 1 $ belongs to

(a) a rod r$ # 1 $

(b) an appendix a$ # 1 $

(c) a protuberance p$ # 1 $,

for all these cases v2 belongs to a conglomerate of 1 $; in this case we can
take v~ 1=v1 , v~ 2=v2 and we can apply Corollary 2.7. We have

:
1 $: 1 $@v~ 1

`(1 $) e:(1 $)+d(1 $)= :
1 $: v~ 2 # 1 $

`(1 $) e:(1 $)+d(1 $)�c4

=2

�
<:(v2) (2.74)
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Figure 5

A first condition is then:

c4

=2

��
<

1
16

= (2.75)

(d) The site v2 # 1 $ belongs to a bond b$ # 1 $. If there exists v~ 1 # 1
which is incongruous with 1 $, in the sense specified in one of the above
cases 1(a)�(c) this means that this 1 $ is considered in �1 $: 1 $@v~ 1

. If all incon-
gruesness between 1 and 1 $ are of this type 1(d), necessarily, we have a
situation like the one depicted in the Fig. 5.

The length of the bond b$ # 1 $ is larger than the length of the rod r1 and
the two minus-sites ast the extrema of the bond have empty intersection
with r~ 1 . In this case we choose v~ 1 # r1 # 1 as the left-most site of the rod r1 ,
so :(v~ 1)= 1

8 =+2c. This implies that there exists another site v~ 2 belonging to
b$ # 1 $ which is incongruous with v~ 1 . We call b1 the part of b$ that is lying
on the left of v~ 2 , b2 the part of b$ that is lying on the right; 11 the part of
1 $ that is touching b1 , and x& the site in 11 connecting b1 with 11 .
Likewise we call b2 the rest of b$: b2=b$"[b1 _ v~ 2], 12 the part of 1 $ that
is connected with b2 on the right and x+ # 12 the site that is connected
with b2 . See Fig. 5.

We have

:
1$: v~ 1 @1 $

`(1 $) e:(1 $)+d(1 )= :
1 $: v~ 2 # 1 $

`(1 $) e:(1 $)

� :
�

|b1|=1
\1&

7
4

=+
|b1|

:
11: 11 % x&

`(11) e:(11)

_ :
�

|b2 |=1 \1&
7
4

=+
|b2 |

:
12: 12 % x+

`(12) e:(12) (2.76)
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Using Corollary 2.7 and (2.60)

r.h.s. of (2.76)�\ 4
7=

c4

=2

�� +
2

=\4
7

c4

=
�� +

2

<
1

16
=+c (2.77)

A second condition is

\4
7

c4

=
�+

2

<c (2.78)

Case 2. v1 # 42 , so v1 belongs to an appendix a1 of 1 and it is
incompatible with a site v2 of 1 $. The site v2 # 1 $ belongs to

(a) a rod r$ # 1 $

(b) an appendix a$ # 1 $

(c) a protuberance p$ # 1 $,

these cases are treated like case 1(a)�(c): (2.75) and (2.78).

(d) the site v2 # b$ # 1 $. In this case there must be another kind of
incongrouesness, that we have seen in the previous cases.

Case 3. v1 # 42 , so v1 belongs to a protuberance p1 of 1; the condi-
tions are the same as the ones of the case 2.

Case 4. v1 # 42 , so v1 belongs to an appendix a1 of 1 and there is
incongruesness with a site v2 of 1 $. The site v2 # 1 $ belongs to

(a) a rod r$ # 1 $

(b) an appendix a$ # 1 $

(c) a protuberance p$ # 1 $,

Again these cases can be treated like 1(a)�(c): (2.75) and (2.78).

(d) the site v2 # b$ # 1 $ there must be another kind of incongruesness,
that we have seen in the previous cases.

In order to verify estimates (2.75) and (2.78) we have to impose condi-
tions on }

16c4

=
��

<1 � }>16c4+
1
8

(2.79)

\4
7

c4

=
�+

2

<c � }>
4
7

c4

- c
+

1
8

(2.80)
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Both these conditions are verified for c= 1
4 if

}>218(1+=2)4 e1�2+ 1
8 (2.81)

the proof is concluded. K

2.2. The Region h1>2J+� and h2<2J+$$, $$;�e&;J, �>>e&;J

In the region h1>2J and h2<2J, due to the fact that the external
fields dominates w.r.t. the molecular field, the + spins are everywhere typi-
cally preferred. We take the zero of the energy in the configuration +1 (all
spins +1). It will become clear that on the line h1=2J both approaches
will be acceptable. We will also see that the regions of applicability of the
approaches overlap in a strip containing the line h2=2J. We write

Z$= :
_ # 04

e&;[H(_)&H( +1 )] (2.82)

Also in the region h1>2J and h2<2J we want to write the partition func-
tion of our system as

Z$=Z� $5$ (2.83)

the product of the partition function of a reference system Z� $ times the par-
tition function of a gas of polymers with small activity 5$ (see Theorem 2.9
for a precise statement). This gas of polymers will be different w.r.t. the pre-
vious one.

Remark 2.6. Let us now heuristically outline how the geometrical
constructions of Sections 2.1 and 2.2 ``coexist'' around the line h2=2J. First
we emphasise that the concept of rod remains the same and for its success-
ful application we require that h1 would be ``strong'' enough, i.e., that
�=h1&2J should not be too small.

Let us describe what kind of behaviour of the rods we expect and how
we analyze it in the complementary approaches of Sections 2.1 and 2.2

We want to prove that rods are rarely appearing, with a probability
of the order =2, and have a typical length of the order 1��. Crossing the line
h2=2J does not produce abrupt changes or non-analyticity of these quan-
tities. On the other hand, if we cross the h2=2J line from above we expect
a rather quick, but analytic, shift of the mean magnetization in the 42 lines
from values almost &1 to almost +1.

But this is not a phase transition like in dimensions 3 and more.
(Compare the articles on ANNNI models refs. [DS], [DS1], and
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[DMS]). Recently, a fairly general study of the structure of anisotropic
phases of general anisotropic, ``stratified'', three dimensional models was
developed in ref. [HZ]. We can say that in our approach we are able to
subordinate the quickly changing behaviour of the 42 lines to the (almost
constant) one of he 41 lines (namely to the behaviour of the rods there) if
h1>2J is kept ``strong enough''.

Needless to say, the concept of a rod works as well in the 42 lines if
the field h2 is sufficiently strong and so we have two possible alternate
approaches if both h1&2J and h2&2J are sufficiently bigger than zero. In
fact in such a region where both h1 and h2 are strong we have a third alter-
native approach to the problem. Namely, one could work with the rods
defined simultaneously both in the even and odd lines. This is the most
appropriate approach in such a case but we omit the details here and con-
centrate only on our most interesting and difficult case above when h2r2J
and h1>2J+� (or h1r2J and h2>2J+�).

As we already noted in the introduction, in the case when both h1 and
h2 are marginal the concept of a rod is not usable in general.

Given a rod r, consider the extended rod r� =r _ r$ _ r" where r$ resp.
r" is just the vertical shift of r by value 1 resp. &1. (See (2.12) and (2.13)
where we wrote r̂=r$ _ r".)

Let us emphasise that given a rod r (of minuses in 41) a typical con-
figuration appearing in r̂ is given by &1 spins everywhere in r$, and in r".

(A) Let us call this an ``antiferromagnetic'' (from the point of view of
the rest of the line to which r belongs) behaviour. This behaviour is typical
both for the ``weak'' and ``strong'' fields h2 and it is even more frequent in
the situation of a strong h2 field. This ideal picture is of course affected by
the presence of the impurities inside of r̂, called ``protuberances'' (which,
indeed, appear with a very small probability, in both regimes).

(B) There is however also an other possibility, having a small prob-
ability but requiring a careful estimate (and being slightly more frequent in
the case of a weak field h2 studied in this section). Namely, we have in
mind the situation when there is a segment of pluses in the r$ line (or r"
line) but not contained inside r$, i.e., a+ appendix in the sense of previous
section

These + appendices of Section 2.1 intersect, typically in one extremal
point only, the segment r$. This will be called an ``extremal protuberance''
now and the whole situation is dealt with, in Section 2.2, in the following
different way: the values of spins outside r$ are simply ``forgotten'' and we
look only for the partition function of the ``rest''. (To avoid confusion, let
us stress once again that the notion of a & appendix defined in this section
appears in quite a different context than the + appendices of Section 2.1!)
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Maybe it is instructive to compare the methods that we are using to
deal with these two cases (A) and (B) in (1) the previous section and (2)
the present one.

(1) In the ``strong field h2 '' situation (that of the previous section) we
applied the following approach. In the case (A) of absence of a +
appendix, we decides ``not to ask what happens outside r$'' and we
expanded the partition function Z&& in the connected regions in 42 start-
ing immediately at the ends of r$. (This expansion lead to the notion of
``bond''.) These connected regions with & boundaries have their other
endpoints either in an extreme point of some other r$ resp. r" or, possibly,
at the boundary of some + appendix.

The case (B) of a nonempty + appendix has a small probability but
is rather subtle. Namely, + appendices, once they appear, tend to be quite
large (in comparison to the, much more damped, protuberances) especially
if we try to shift our analysis from the h2=2J line slightly also to the
region of a weak h2 field.

(2) Now, in the present, ``weak field h2 '' situation the rods are the
same as before but otherwise we re doing, in a sense, an opposite construc-
tion. Namely, it is in the case of ``ferromagnetic'' behavior (if we have some
pluses in r$ touching its boundary; namely the case (B)) where we ``cut our
interest on whether the observed pluses at the boundary of r$ continue also
outside of r$''. The segments where we expand Z++ (leading o bonds)
defined is the situation (2) are + ones (compared to segments, with
boundary condition &, of the previous section). they will start immediately
at the end of r$, provided that the latter carries the value +. Otherwise, we
will look for the continuation of such a row of minuses intersection r$ also
when it is leaving r$. The next interval where we expand Z++ will then
start just at the end of such a & appendix.

So the partition functions Z++ (to be expanded and leading to bonds)
are now taken on intervals starting either (less typically) directly in the +
boundary points of r$ or (much more typically!) touching the &
appendices just mentioned. Contrary to the concept of a (strong h2 field)
+ appendix, the appearance of & appendices in the weak h2 field situation
is a typical phenomenon accompanying almost always the appearance of a
rod.

The analysis of these & appendices is again a rather subtle one, being
possible essentially only in the h2<2J regime (with an overlap with the
h2>2J marginal regime).

Notice that it is important to take the correct choice of Z&& resp.
Z++ in the two respective (strong field and weak field h2) cases; otherwise
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the coefficient c1 in (2.25) (and analogously for the +situation) decreases
to zero with h2&2J becoming negative (resp. positive), making (2.35) a not
easily controllable object.

To summarize, around the line h2=2J we have developed two com-
peting approaches proving uniqueness and analyticity; each of these
approaches works easily in one of the regions h2>2J resp. h2<2J. With
some care, it can be extended also slightly inside of the other region.

We have now to redefine (in comparison to Section 2.1) some objects.
Recall that a rod is a maximal connected segment of &1 spins in 41 . We
still use the notation:

rx, l=[y # 41 | x1< y1<x1+l&1 and y2=x2] (2.84)

Now the weight of a rod is:

`(rx, l)=e&;[H(_(\x, l ))&H( +1 )]=e&2J;e&2Jl;e&h1 l; (2.85)

We define r̂x, l and E(rx, l) as in Definition 2.3 (Eqs. (2.12) and (2.14)).
We call _(r� x, l) the configuration in which the spins &1 are precisely

the ones in the rectangle r� x, l : the extension of rx, l which has been defined
in (2.13). We have:

`(r� x, l)=e&;[H(_(r� x, l ))&H( +1 )]

=e&6J;e&(2J&2h2) l;e&h1 l;==6e&($+�) ;l (2.86)

Given _ # 04 , we denote now by C(_) the maximal connected components
(segments \/42) of +1 spins in �(x, l ) # L(_) r̂x, l .

Definition 2.22. Given _, we call protuberances and denote by p
the components \ # C(_) contained in r̂x, l"E(rx, l). We denote by P(_) the
set of all protuberances.

P(_)=[\ # C(\) : _(x, l ) # L(_): \/ r̂x, l"E(rx, l)] (2.87)

`( p)=e&;[H(_(r� x, l , p))&H(_(r� x, l ))]=e&2J;e&2 l; (2.88)

where _(r� x, l , p) is the configuration that has the sites &1 precisely in the
rectangle _(r� x, l)"p. However the following object will play an important
rule.

Definition 2.23. We call extremal protuberances of _ and denote
them by q the other components of C(_).

Q(_)=C(_)"P(_) (2.89)
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Given _ # 04 we denote by D(_) the maximal connected components
(segments \� /42) of &1 spins that have non empty intersection with r̂x, l .

Definition 2.24. We call appendices and denote by a the part of
the components of \� # D(_) lying outside any r̂x, l :

A(_)={a=\� >\ .
(x, l ) # L(_)

r̂x, l+: \� # D(_)= (2.90)

`0(q)=e&;[H(_(r� x, l , q))&H(_(r� x, l ))]=e&h2 l; (2.91)

`0(a)=e&;[H(_(r� x, l , a))&H(_(r� x, l ))]=e&(2J&h2) l; (2.92)

Notice that \� can completely contain the upper or the lower part of some
r̂x, l ; in these cases it can happen that a is empty or that we have one \� that
gives rise to one or two appendices.

Remark 2.7. Thus the probability of the event that a given rod r
and appendices aup, adown (below resp. above r) appear is of the order of =6.
This looks to be incoherent with the result of the previous section giving
a probability of =2 to the rod, but there is no contradiction. Indeed the
entropy associated to the four ends of the appendices aup, adown is of the
order 1�=4, thus the final result for the probability of a rod r is again of the
order =2 in agreement to the argument of the previous section.

As in Section 2.1, two elements a, a$ (appendices), p, p$ (protuberan-
ces), a, p are incompatible if they intersect. Given L # L, a triple of families
A, Q, P of (compatible) appendices and protuberances is called ``L-com-
patible'' if there exists _ # 0 such that L(_), A(_), Q(_), P(_)=L, A, Q, P.
We denote by A� , Q� , P� /42 the supports of A, P, respectively:

A� = .
a # A

a Q� = .
q # Q

q P� = .
p # P

p (2.93)

Given a compatible set L, A, Q we denote by A� the extension of A� to the
nearest neighbour sites in 42 not contained in any r̂x, l with (x, l ) # L:

A� =A� _ {y # 42 : dist(y, A� )=1, y & \ .
(x, l ) # L

r̂x, l +=<=
_ .

rx, l # L

(E� (rx, l): such that in r̂x, l there are no appendices

and protuberances.) (2.94)
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Now we have, for the partition function Z(4) an expression analogous to
the one given in Eq. (2.21); in place of Z[L; A; P]

42
we will have Z[L; A; Q; P]

42

namely the partition function in 42"[A� _ (�x, l # L r̂x, l)] with + boundary
conditions on the contiguous sites on 41 and + boundary conditions on
the contiguous sites in 42 .

Z[L; A; Q; P]
42

splits into the product of partition functions of one dimen-
sional Ising systems on some intervals in 42 with filed $ and + boundary
conditions on their extrema. Indeed, given L, A, Q, P we set: 42"[A� _
(�x, l # L r̂x, l)]=�j gj . The gj are disjoint intervals that lie in 42 between
pairs of sites which are either extreme points of some extended appendices
in A� or sites of some q # Q. This latter case corresponds to saying that in
y # E(rx, l) we have _( y)=+1. Given L, A, Q, P we denote by G(L, A, P)
the � gi ; the spin inside the intervals gj are free and we are going to sum
up over their values. We observe that

Z{, {$
l (h, &)=Z&{, &{$

l (&h, +) (2.95)

we use the identification (2.95) to compute Z++
l ($, +) with positive $. As

before we can use the Proposition 2.1.

Z++
l =* l+1

0 c1($, ++) \1+c2($, ++) \*1

*0+
l+1

+ (2.96)

`(g)=*0c1($, ++) \1+c2($, ++) \*1

*0+
| g|+1

+ (2.97)

If $=e&c; and $<= � c>J

`(a)=`0(a)\ 1
*0+

l

=\J &(2J&2h2 ) ;

*0 +
l

�=&;$l \1&
3
4

=+
l

(2.98)

We define bonds as before, but now its activity is

`(b)=(1&2=+o(=)) l (2.99)

Notice that plus spins are preferred on 41 , so that the rods on 41 are
depressed, both for positive and negative $. On the other hand the
behaviour on 42 changes smoothly but quickly when $ changes sign. It
easily follows from (2.24), (2.29) and (2.31), that when $ increases the
weights of `(a), `(b) decrease. In particular (2.98), (2.99) continue to hold.
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In order to get a convergent cluster expansion we can repeat the same
steps as the ones that we used in previous Section 2.1. We extend now the
notion of conglomerates; they are composed of interacting extended rods,
appendices and protuberances. The small factor =6 in the (2.86) will be used
to control the sum over the appendices. In this way it is easy to obtain the
analogous of Theorem 2.6, Corollary 2.7 and the following statement:

Theorem 2.9. Let be �=}$= and suppose }>219e1�2, then, for ;
sufficiently large

:
1@1 $

`(1 $) e:(1 $)+d(1 $)�:(1 ) (2.100)

We conclude this section by observing that from Lemma 2.2 and form
Theorem 2.8 we can deduce, using the usual methods of the cluster expan-
sion, uniqueness of the Gibbs measure and exponential decay of truncated
correlations. It turns out that in the horizontal direction the correlation
length is much larger (order of 1�=) than in the vertical direction (order 1).

3. THE COEXISTENCE ON THE LINE h1=h2

In this section we prove that on the line h1=h2<2J, for sufficiently
low temperature we have coexistence of two phases. The result is stated in
the following theorem 3.1.

Theorem 3.1. There exists #(;) going to zero as ; goes to infinity,
such that if we suppose h1=h2=2J&' with

'='(;)=exp[&;(J&#(;))]

then, for ; sufficiently large, there are at least two Gibbs measures.

Proof. Consider a square 4/Z2 centered at the origin and take
minus boundary condition outside 4. If we are able to prove that the
Gibbs probability (with minus boundary conditions) that the spin at the
origin is positive (that we denote by +&

4 (_0=+)) is strictly less than 1
2 ,

uniformly in 4, then, by symmetry, we get the result. Indeed, by symmetry,
we have +&

4 (_0=+)=++
4 (_0=&).

We describe the configurations inside 4 via the usual Peierls contours.
Given _ # [&1, +1]4, we draw, for any pair of n. n. sites (x, y), with
opposite spins, a unit segment orthogonal to x, y (and joining two points
of the dual lattice Z2+( 1

2 , 1
2)). In this way we associate to each

_ # [&1, +1]4 a set of polygonals such that for every point i of 4* (the
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set of points in the dual lattice contained in 4) we have an even number
of unit segments (0, 2, or 4) emerging from i. Let us use the Gallavotti
convention: when we have 4 unit segments emerging from i modify the
``cross' by cutting in the direction North-East��South-West. (See [GMM]).
Indeed there is a one to one correspondence between configurations
_ # [&1, +1]4 (with minus b.c.) and the set of ``compatible families'' of
``signed closed contours''.

Let us clarify the concept of ``compatible family''. Given _, consider
the set #1 ,..., #n of closed, selfavoiding polygonals (=polygons) to which it
gives rise. We assign to each #i the sign of the spins immediately interior
to # and we denote it by sign(#). For instance the outer polygons # (namely
the ones connected to �4 by a n.n. path of minus spins) have the + sign;
we call contour a signed polygon. by abuse of notation we continue to
denote by # the contour; namely the polygon (as a geometrical object)
together with its sign. A ``compatible family of contours'' is a set (#1 ,..., #n)
such that there exists a _ # [&1, +1]4 giving rise, with minus boundary
conditions, to (#1 ,..., #n) as the set of its signed closed polygons.

There is a natural partial order by inclusion in the set of polygons.
It is immediate to see that if #i , #j are two contours making part of a
compatible family: (#1 ,..., #i ,..., #j ,..., #n) and if #i/#j and ``there is no other
contour of the family'' between #i and #j (namely there exists a path in 4*
connecting #i to #j without intersecting any other member of the family)
then the sign of #i is opposite to that of #j . Let _ � (#1 ,..., #n) be a configu-
ration, associated to the unique compatible family of contours to which it
gives rise. The Gibbs probability of _ can be expressed in terms of factor-
ized weights (activities) attributed to #i . Indeed let

+&
4 (_)=

exp[&;[H(_)&H(&1
�
)]]

�_$ exp[&;[H(_$)&H(&1
�
)]]

where &1
�

is the configuration with all spins minus.
We denote, by abuse of notation, by H(#1 ,..., #n) the energy associated

to _ when (#1 ,..., #n) is precisely the family corresponding to _. Suppose to
partially order (#1 ,..., #n) by inclusion so that #1 is an outer contour. We
write

H((#1 ,..., #n))&H(&1
�
)

=H(#1)&H(&1
�
)+H(#1 , #2)&H(#1)+ } } } +H(#1 ,..., #n)&H(#1 ,..., #n&1)

It is easy to see that:

H(#1 ,..., #k)&H(#1 ,..., #k&1)=H(#k)&H(&sign(#k))
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We get, for _ � (#1 ,..., #n)

+4(_)=
`(#1) } } } `(#n)

� (#1 ,..., #k )/4 `(#1) } } } `(#k)
(3.1)

where the sum in the denominator of (3.1) extends to all compatible
families of contours, contains the contribution 1 corresponding to the
empty family and

`(#) :=exp[&;[H(#)&H(&sign(#))]]

Notice that `(#) depends in a non trivial way on the location of #.
Let 00 denote the set of compatible families (#1 ,..., #n) such that there

exists at least a #i # (#1 ,..., #n) containing the origin O in its interior. Given
an element (#1 ,..., #n) # 00 we denote by #̂(#1 ,..., #n) the minimal (in the
sense of inclusion) between the #i in (#1 ,..., #n) which contain the origin.

So, given (#1 ,..., #n)/00 , either n=1 and #1= #̂ or (#1 ,..., #n)=
(#̂, #$1 ,..., #$n&1), O # 3(#̂) and there is no other contour containing O inside
3(#̂); here by 3(#) we denote the region of Z2 enclosed in #.

We will prove, indeed, that:

+4(_0=+)<< 1
2 (3.2)

We have

+&
4 (_0=+)

=

:
#� : sign(#� )=+, 3(#� ) % 0

`(#� ) :
(#i

1 ,..., #i
k , #e

1 ,..., #l
e) # 1

`(# i
1) } } } `( y i

k) `(#e
1) } } } `(#e

1)

:
(#1 ,..., #k )comp

`(#1) } } } `(#n)
(3.3)

where 1 is the set of all collections of contour # i
1 ,..., # i

k , #e
1 ,..., #e

l with
k�0, l�0 such that

�� # i
1 ,..., # i

k are contained in #� and do not contain the origin.

�� #� , # i
1 ,..., # i

k , #e
1 ,..., #e

l is a compatible family and

�� #̂(#� , # i
1 ,..., # i

k , #e
1 ,..., #e

l )=#� . In the r.h.s. of the (3.3) by the notation
``(#1 ,...,..., #n)comp '' we express that (#1 ,..., #n) constitute a com-
patible family.
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Now consider the transformation S acting on signed contours in the
following way: S#=#$ where #$ is obtained from # by translating it of one
unit in the vertical direction and by simultaneously changing its sign. It is
immediate that, due to the symmetry: h1=h2 , the activity is invariant
under S:

`(#)=`(S#)

It is clear that the set (S#i
1 ,..., S#i

k , #e
1 ,..., #e

l ) constitutes a compatible family.
We also call S the invertible transformation mapping

(#i
1 ,..., #i

k , #e
1 ,..., #e

l ) # 1 � (S#i
1 ,..., S#i

k , #e
1 ,..., #e

l ).

Thus, we get

+&
4 (_0=+)=

:
#� : sign(#� )=+, 3(#� ) % 0

`(#� ) :
(#1 ,..., #m) # S1

`(#1) } } } `(#m)

:
(#1 ,..., #k)comp

`(#1) } } } `(#n)
(3.4)

and so

+&
4 (_0=+)� :

#� : sign(#̂)=+

`(#� ) (3.5)

where 3(#� ) % 0. We now want to make a comparison with another model;
we want to prove that there exist J1(;), J2(;)

:
#� : 3(#� ) % 0 sign(#� )=+

`(#� )� :
#: 3(#) % 0

`J1 , J2
(#) (3.6)

where `J1 , J2
(#) is the activity of a Peierls contour for an anisotropic n.n;

two dimensional Ising Model with horizontal and vertical coupling con-
stants equal, respectively, to J1 , J2 . Given a closed Peierls + signed con-
tour #, consider a horizontal unit segment b belonging to # such that the
normal to b, external to #, is upwards. Let x be the interior site adjacent
to b(x below b). then consider the vertical line orthogonal to b in the inte-
rior of 3(#); let b$ be the first unit segment encountered by this line in #;
the external normal to b$ is necessarily downwards. We have two cases;
either

1. the distance between b and b$ is one, or

2. the distance between b and b$ is larger than one.
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Figure 6

In the first case the energy difference w.r.t. the reference configuration
&1

�
due to the two broken bonds corresponding to b and b$ and the exter-

nal contribution due to the magnetic field is (see Fig. 6)
In the second case if x # 41 , we associate x to b; putting together the

contribution of the broken bond and the one of the field, the resulting
energy increment is J&h1 . If x # 42 , we consider b alone so that the energy
increment is just J. Now we look at b$: if y (the site adjacent from the inte-
rior to b$, y above b$) belongs to 41 , we associate to b$ two sites y and
y$= y+e2 (e2 vertical upwards unit vector). The corresponding energy
increment is only J as the field contributions compensate, since h1=h2=h.
If y # 42 we associate only y to b and get an energy increment J+h2 .

A vertical unit segment always carries an energy difference J.
It is immediate to verify that this association of the adjacent interior

sites to unit segments of # makes sense and that the remaining interior
sites (the bulk) give a zero field contribution. Moreover summing the
contribution to the energy of b and b$ (plus possibly the suitable set of
internal sites) we get a lower bound to the energy associated to each #
given by

J |#v|+
2J&h

2
|#h| (3.7)

where |#v | is the length of the vertical part of # whereas |#h | is the length
of the horizontal part of #.

So we get (3.6) with

J1=J, J2=
2J&h

2
=

'(;)
2

(3.8)

In this way we are reduced to study the sum in the r.h.s. of (3.6).
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Figure 7

This is the content of the following

Proposition 3.2 (Estimate for the J1 , J2 Model). Given a
J1 , J2 model, let p=e&J2; ==e&J1; with J2=e&c;, c�J1 ; let `J1 , J2

(#)=
p |#h|= |#v | we have

:
#: 3(#) % 0

`J1 , J2
(#)�8

=2

(1& p)2 (3.9)

Proof Consider the elementary components in Fig. 7.
For each of them we have two differents ``bricks'', one has the initial

point on the left (up) and another than have the right (down). In Fig. 8,
v represents the initial point and _ the final point of the brick.

We say that two bricks (oriented components) S1 and S2 are con-
tiguous and we write S1 @S2 , if the initial point of S2 coincides with the final
point of S1 and these two coinciding points do not belong to two horizon-
tal unit segments.

It is easy to see that: given a closed Peierls contour #, there exists a
family of bricks such that (S1 ,..., Sn) @=#, where by (S1 ,..., Sn) @ we express
the fact that S1 _ } } } _ Sn=# and Sj @Sj+1 \j=1,..., n&1.

The sum over all bricks having a fixed extremum is bounded by

:
�

l=0

pl==
=

1& p
t

e&J1;

;e&c; � 0 if c=J (3.10)

The sum over all rods of length l containing a given unit segment b is
bounded by

:
l1 , l2

=2p2l1p2l2 t
=2

q2 � 0 where q=1& p

Figure 8
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It is easy to convince oneself, that

:
#: 3(#) % 0

p |#h |= |#v | � :
# % b

|#v | p |#h |= |#v |� :
# % b

(2=) |#v | p |#h | (3.11)

We set =$=2=; we want to prove that

:
# % b

`$(#)�$(;) (3.12)

where

`$(#)=(=$) |#v | p |#h |

and $(;) � 0 as ; � �.
Let # denote a generic closed Peierls contour; we now prove the

following estimate:

:
# % b

`$(#)�
=$
q

(3.13)

where the sum in the l.h.s. of the (3.13) extends to all closed polygons
containing a horizontal unit segment b.

Given a closed polygon # we denote by &#& the minimal number of
bricks (elementary oriented components) such that #=�&#&

i=1 S i . If # % b
there must exist a brick S1 containing b; thus we have

:
# % b

`$(#)= :
S1 % b

:
# % S1

`$(#)

= :
S1 % b

`$(S1) :
�

n=1

:
#: &#&=n+1

`$(#"S1)� (3.14)

where `$(S1) can be either =$ (vertical unit segment) or =$pl for some
suitable l (horizontal length of S1)

� :
S1 % b

`$(S1) :
�

n=1

:
S2 ,..., Sn+1

`$(S2) } } } `$(Sn+1) (3.15)

Consider S1 ,..., Sn such that S j @Sj+1 \j=1,..., n and suppose that there
exists a closed polygon # with &#&=n+1 and a brick Sn+1 such that

(S1 ,..., Sn+1) @=# (3.16)

then the pair (Sn+1 , #) is unique.
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We have

:
S1 % b

`$(S1)= :
�

l1 , l2 =0

=$pl1pl2 t
=$
q2 (3.17)

where q=1& p. Given k # 4*

:
S@k

`$(S)� :
�

l=0

=$p l
t

=$
q

(3.18)

where by S@k we mean that k is the initial point of S. Now (3.14) and (3.15)
becomes

:
# % b

`$(#)� :
S1 # b

`$(S1) :
�

n=1

=$ :
S2 ,..., Sn

`$(S2) } } } `$(Sn) (3.19)

�=$ :
S1 % b

`$(S1) :
�

n=1
_:

S@k

`$(S)&
n&1

==$ :
S1 % b

1
1&(=$�q)

�2 \=$
q+

2

(3.20)

From (3.5), (3.8) and (3.11) we conclude the proof of Proposition 3.2 and
then the one of Theorem 3.1 (since for ; large 2(=$�q)2<< 1

2 if c=J ). K

4. GENERAL ANISOTROPIC POLYMER MODELS

4.1. New, Simple Proof of Kotecky� Preiss Criterions

Let P be a finite set, its elements P1 ,..., P |P| are called polymers. We
suppose given a binary compatibility relation. This means that in the
cartesian product P_P w give a subset V called the set of compatible
pairs. Two polymers which are not compatible are said to be incompatible.
We write P1 c P2 , P1 @ P2 when (P1 , P2) is a compatible, respectively,
incompatible pair. We suppose given a function w: P � C called activity.

The polymer partition function is:

ZP =ZP (w)= :
(P1 ,..., Pn)c : Pi/P

`
n

i=1

wPi
(4.1)

where the sum is over all families (P1 ,..., Pn)c of pairwise compatible
polymers in P. In (4.1) we use the convention that the contribution of
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n=0 term (corresponding to the empty set) is 1. Notice that, in many
applications, there is a spatial structure such that it is possible to associate
a ``support'' P� , namely a finite subset of Zd, to a polymer P; for instance
this is the case when considering both high and low temperature expan-
sions for short range translationally invariant lattice spin systems. In those
cases compatibility of P1 P2 is just some geometrical property of their sup-
port like absence of overlapping; moreover we have that polymers P with
P� ``well inside the bulk'' of a volume 4, have a translationally invariant
activity wP . We look at ZP as a function of many complex variables
w1 ,..., w |P| . In what follows we will often consider collections \ of polymers
where multiple copies are allowed. In other words a collection \ of poly-
mers is identified by a function n\ on P taking values on Z+: n\=
[n(P), P # P] the non negative integer n(P) represents the multiplicity of
the polymer P in \. We write \=(\� , n\) where \� is the ``support'' of the
collection \:

\� =[P # P : n\(P)�1] (4.2)

The set of collections of polymers in P is denoted by R(P).
Following [D] we can write the Taylor series:

log ZP= :
\ # R(P)

rP(\) `
P # \

wn\(P)
P (4.3)

where

rP(\)=(n\(P1)! } } } n\(Pn)!)&1 �n\(P1)+ } } } +n\(Pn) log ZP

�n\(P1)w(P1) } } } �n\(Pn)w(Pn)
(4.4)

given \� =P1 ,..., Pn/P and an activity function w, let w(\� ) be the new
activity function given

w(\� )(P)={w(P)
0

P # \�
otherwise

(4.5)

We trivially have

ZP(w(\� ))=Z\� (w(\� )) (4.6)

and from (4.4):

rP(\)=r\� (\)=: r(\) (4.7)
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We will call cluster and denote by C and indecomposable collection of
polymers. Decomposability means that there exists a partition of C into
two sets: C=C1 _ C2 , such that (P1 , P2) is a compatible pair \P1 # C1 and
P2 # C2 . The subset of R(P) consisting in all clusters in P will be denoted
by G(P). Also for a cluster, polymers can appear with a multiplicity.

We have

log ZP= :
C/G(P)

8C (4.8)

with

8C=r(C) `
P # C

(wP)nC (P) (4.9)

The important feature of (4.8) is that the sum on the r.h.s. extends to all
clusters of polymers in P. Indeed, suppose that in (4.3) it appears a decom-
posable collection \: \� =\� 1 _ \� 2 with \� 1{<, \� 2{<, \� 1 & \� 2=<, and
every pair (P1 , P2) with P1 # \� 1 , P2 # \� 2 is compatible, we have

log Z\� (w)=log Z\� 1
(w)+log Z\� 2

(w) (4.10)

and then we get r(\)=0.
Our main aim, in this section, is to give a simple proof of the result

in Theorem 4.1 below which is a slightly weaker version of the general
result stated in [KP]. However, the proof given below will be really
elementary and straightforward.

To make it as short as possible we will not try to optimize the choice
of the constant C=C($) used below in (4.12). This constant can be pushed
apparently down to the value C=1 [KP] (or even lower for some special
cases) with some more careful estimates. Our emphasis here is on the sim-
plicity of all estimates.

We set

C=C($)= max
x # (0, $) {

&log(1&x)
x == max

x # (0, $)
[1+x�2+x2�3+ } } } ] (4.11)

C($)=1+O($) for small $.

Theorem 4.1. Assume that there are functions a and d on P

(a>0, d�0) and $>0 such that

|wP | ea(P)�$ (4.12)
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holds for any polymer P # P. Moreover, assume that for any P # P we have
the bound

:
P$@P

|wP$| ea(P$)+d(P$)�
a(P)

C
(4.13)

Then we have for any P # P

:
C: C@P

|8C | e� P # C nP d(P)�a(P) (4.14)

Note. The statement (4.14) gives an information on the decay of the
terms 8C in the expansion (4.8).

Proof. We will consider here only the case d=0. (The argument for
a general d is quite analogous; just work with the weights w~ P=wPed(P) and
write only the factors ed(P), not enP d(P), in the estimates (4.27)�(4.31) below
when inserted into (4.32).) The proof uses induction over the cardinality
|P| of the system P of all available polymers. We then suppose

:
P$@P

|wP$| ea(P$)�
a(P)

C
(4.15)

Moreover we suppose that we already have the bound

:
C@P

|8C|�a(P) (4.16)

when the cardinality of the set P is |P|=n.
Then we want to prove (4.16) for |P|=n+1.
In other words, from

(i) the validity of (4.16) for |P|=1 and from

(ii) the implication: [(4.15) and (4.16) for P=n] implies [(4.16) for
P=n+1] the theorem follows by induction.

Let us first prove (4.16) for the particular case |P|=1. When |P|=1
we have ZP=1+z, z=wP

log ZP=log(1+z)= :
�

m=1

(&1)m+1

m
zm (4.17)
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We would like to have the validity of (4.15). It reads in this case

zea<
a
C

: � z<
a
C

e&a (4.18)

Condition (4.16) reads

:
�

m=1

zm

m
=&log(1&z)<a (4.19)

(the first equality above holds if |z|<1). If C is given by (4.11) then from
(4.19) we have the bound

&log \1&
a
C

e&a+<ae&a<a (4.20)

Therefore (4.16) holds for n=1.
Let us now prove that (4.15), together with (4.16) for P=n, imply

(4.16) for P=n+1. We define

A=ZP"P= :
(P1,..., Pm) c/P, P � (P1,..., Pm)

wP1
} } } } } wPm

(4.21)

B= :
(P, P1,..., Pm) c/P, P � (P1,..., Pm)

wP1
} } } } } wPm

(4.22)

We set x=wP . Then we have from (4.1) the relation

ZP=A+Bx

On one hand, from the Eq. (4.8) we immediately get

(I)

log(Bx+A)&log A=log ZP&log ZP"P= :
�

m=1

:
mV

C % P

8C (4.23)

where �mV
C % P 8C runs over the set of clusters containing P with multiplicity m.

On the other hand, we can expand

(II)

log(Bx+A)=log A+x
A
B

&1�2
x2A2

B2 + } } } (4.24)

log(Bx+A)&log A= :
�

m=1

(wP)m

m
(&1)m+1 \A

B+
m

(4.25)
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Applying again (4.8) we now have also the relation

log
A
B

= :
C %3 P

8C& :
C %3 P: CcP

8C= :
C %3 P: C@P

8C (4.26)

where the last sum runs over the clusters C not containing the polymer P
but incompatible with P. Then from (4.25) and (4.26), and identifying the
corresponding powers of x from (4.23) we get:

:
mV

C % P

8C=
(wP)m

m
(&1)m+1 exp \m :

C %3 P: C@P

8C + (4.27)

This is an identification of two asymptotic series.
Write, for |P|=n+1,

:
C: C@P

|8C |� :
P$@P

:
�

m=1

:
mV

C: C % P$

|8C | (4.28)

From (4.27) we get

:
mV

C: P # C

|8C |�
1
m

|(wP)|m exp \m :
C %3 P: C@P

|8C |+ (4.29)

and because of the inductive hypothesis (valid for P"P since |P"P|=n) we
have

exp \m :
C %3 P: C@P

|8C |+�exp(ma(P)) (4.30)

Therefore, from (4.28), (4.29) and (4.30) we get

:
C: @P

|8C |� :
P$@P

:
�

m=1

1
m

|(wP$)| m exp(ma(P$)) (4.31)

Summing over m and using (4.11) and (4.12) we finally get

:
�

m=1

1
m

|(wP$)|m exp(ma(P$))<CwP$ea(P$) (4.32)

and from (4.31), (4.32) and (4.13) we get the required induction step. K
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In the following, we study a particular example of a polymer model
which was important in the previous sections of the paper (not directly in
the form which is used here but with some minor modifications and
generalizations).

Namely, the anisotropic nature of our Ising type models leads, rather
naturally, to polymers whose weights are defined in an anisotropic way,
too. We saw that these polymers (examples are rods and more generally
conglomerates of rods, protuberances, appendices, bonds used in Section 2.1
and 2.2 and also the Ising contours used in Section 3) are composed by
horizontal and vertical ``segments''��and these segments carry a very dif-
ferent weight.

Namely, in most of our examples the energy of such objects is defines
in such a way that we pay a very little price for the horizontal segments
and, on the contrary, a rather big price for the vertical segments. In fact,
we worked with a (rather straightforward) generalization of such a concept
where several types of such horizontal (and vertical) segments appear
(rods, protuberances, appendices, bonds).

A general observation can be made about all these examples namely
that the main role of the vertical segments is to ``control'' the much more
delicate behaviour of our polymers in the horizontal direction, and the rest
of vertical part of the polymer is much easily controlled, like in the usual
low temperature Ising contour systems.

In a sense, vertical parts of the polymers supply the energy needed to
compensate the ``horizontal entropy'' of these objects.

It turns out that the ideas connected with the [KP] criterion are
rather useful when investigating all these models.

4.2. One Dimensional Polymer Models

Let us start with one dimensional examples.
Of course, in these cases there are powerful methods of expression of

the partition function��namely the method of transfer matrix used in Sec-
tion 2.1 and 2.2 of this paper (in the expressions of partition functions Z++

resp. Z&&) and also the more general method of expansion of the generat-
ing function of the sequence of partition functions Z[0, n] in volumes
[0, n]. The latter method is briefly discussed below and we are indebted
Lincoln Chayes who clarified to us this point.

It is not uninteresting to illustrate the use of the condition [KP] even
in this one dimensional case. The reasons are:

(1) our basic examples of anisotropic polymers constructed (in dimen-
sion &=2) in Sections 2.1 and 2.2 were, in fact, constructed from suitable one
dimensional building blocks (rods, protuberances, appendices, bonds);
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(2) even in the context of the (above mentioned) powerful one
dimensional methods of computation of partition function, the [KP] con-
dition gives some complementary information, e.g., some lower bounds on
the distance between the first two principal eigenvalues of the model.

But let us first explain the method of generating function. Let
polymers in Z be defined as ``segments'' (intervals) S=[n, m] with n<m
and let the weights wS be translation invariant, defined as w[n, m]=wn&m

where the polymer weights wn satisfy some condition of convergence. In
fact, only very mild conditions on wn are necessary and our condition that

:
n # Z

nwnean<a (4.33)

holds for some a>0 (notice that we can write it also as �S: S % 0 wSea |S |�a
which is essentially the condition (4.13)!) is unnecessarily strong for the
existence of a nontrivial function f defined below. Denote by Z[0, n] the par-
tition function in the volume [0, n] and consider the generating functions
of the complex variable z

g(z)= :
�

n=1

wnzn and f (z)= :
�

n=1

Z[0, n] zn (4.34)

Write Z[0, n] as Zn and put Z1=Z2=1. The recursive relation

Zn=Zn&1+ :
n&2

k=1

wk Zn&k&1 (4.35)

implies the corresponding equation between generating functions f and g
namely

f (z)=
z

1&z(1+ g(z))
(4.36)

that if f (z) can be extended to a meromorphic function defined at least
on the convergence ball of g(z). More precisely, from (4.35) we have
��

n=1 Zn zn=z+z(��
k=1 ��

m=1 wkzkZmzm) and this implies (4.36).
For example, for the case of wn==qn, 0<q<1 (these weights

appeared often in the previous parts of the paper) we have

g(z)= :
�

n=1

=(qz)n=
=qz

1&qz
(4.37)
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so that f (z) can be extended to a meromorphic function defined in the
whole complex plane, with single poles in located in the roots of the qua-
dratic equation q(1&=) z2&(q+1) z+1=0, i.e., in the points z1, 2=
((q+1)\- (q&1)2&=2q2)�(2(1&=) q).

Writing the Laurent expansion of f (z) one then obtains rather precise
expansions of the partition functions Zn , i.e., of the coefficients of the
power series for f (z). for example if f (z) is meromorphic in the whole com-
plex plane and *<1<+ are he poles of f (z), i.e., the roots of the equation

1&z(1+ g(z))=0 (4.38)

which are the nearest ones to the value 1 (like the values z1<1<z2 in
the example (4.36) above) then we have an expansion, for each natural
number n

Zn=a*&n+b+&n+smaller terms (4.39)

One can be now interested in some upper bounds for the value of the frac-
tion |+�*|, i.e., (having in mind that *r1 for small wn) in upper bounds for
the distance +&*. The condition (4.33) gives some information on this,
namely we can rewrite (4.33) as the condition on the derivative

| g$(z)|�a \ |z|�ea (4.40)

Such a bound for g$(z) allows to make some estimates on the localization
of the poles of f (z). Of course, for special examples like (4.37) one can com-
pute exactly all these poles and this gives a much more accurate informa-
tion than (4.40).

4.3. More Dimensional ``Segmental'' Polymer Models

The aim of this section is twofold. First, we want to give some more
general, unifying commentary to what we already did in Sections 2.1 and 2.2
(see the definition (2.62)). Second, this is an attempt to prepare a possible
ground for a future paper dealing with phase transitions of general aniso-
tropic models.

Having in mind a systematic use of the Pirogov Sinai theory in these
problems, it will be useful to have a fairly general approach to a notion of
a ``segmental polymer'' and we outline such an approach below. We expect
that such a general framework could be adequate, with some further
modifications and generalizations (e.g., taking into account also possible
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volume ``energy'' terms, appearing in the interior of segmental polymers)
also in future investigations of Gibbs states of anisotropic models.

Let us define a segment Sq(x, l ), where q # [1,..., N] is the ``colour'' of
the segment and x is the initial point x=(x1 , x2 ,..., xd ) # Zd, such that

Sq(x, l )=[y=( y1 ,..., yd ) # Zd : j{1, yj=xj and x1� y1�x1+l&1]
(4.41)

The support of Sq(x, l ) is the rectangle S� (x, l )=x+l_1_ } } } _1.
Two segments Sq(x, l ) and Sq$(x$, l $) are connected if their supports

intersect (in a prescribed way) and the colours q, q" are ``compatible''.
Think of rods, appendices, protuberances or bonds as of segments

having different colours ``r'', ``a'', ``p'' or ``b''. There are some obvious limita-
tions (see Section 2.1 and 2.2) on the construction of aggregates from these
objects (i.e., the limitations on where the different colours can live and how
they can touch).

For another example imagine that Ising contours # of Section 3 are
represented as connected conglomerates of horizontal segments (into which
each volume V(#) is decomposed). We have in mind the possible applica-
tion of our concept of segmental polymers to the analysis of the corre-
sponding Pirogov Sinai ``contour models''.

The concept of compatibility of the ``colours'' is trivial in this example
because we have only one colour here. (However, we have two different
polymer models, the + contour ensemble and the & one, and they are
related by symmetry in the special case of zero magnetic field).

We use the symbol @ to denote that two segments are connected. We
denote by `(Sq(x, l ))=`q(S� (x, l )) the weight of one segment. For example,
it can be given by the formula

`(Sq(x, l )) :==p l (4.42)

with p and = depending on q. The segmental polymer is defined as a
suitable connected collection P=[Sq(x, l )] of segments. We denote by |P|
the number of segments in P. Connectedness of P is meant in the graph
relation @. It implies the connectedness of the support of P. We call Lq(P)
the set of all coordinates of the segments that are in P

Lq(P)=[(x1, l 1) } } } (xn, l n): Sq(w j, l j ) is a segment in P] (4.43)

and the support P� of a polymer P is given as

P� := .
(x, l ) # Lq(P)

S� q(x, l )
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The weight of a polymer will be defined as

`(P)= `
N

q=1

`
(x, l ) # Lq(P)

`(Sq(x, l )) (4.44)

We give, now, a sufficient condition (see (4.45) below) from which one can
deduce a convergent cluster expansion. Unfortunately it is not satisfied in
the case considered in the Sections 2.1, 2.2, and 3.

Proposition 4.2. Suppose that there exists a positive function aq

such that

:
(Sq$x$, l $): Sq$ (x$, l $) @Sq(x, l )

`(Sq$(x$, l $)) e2aq$ |l $|<aq l (4.45)

then we have (the sum is over all polymers P containing a segment
Sq(x, l ))

:
P: P@Sq(x, l )

`(P) ea(P)<aq� l (4.46)

where a(P)=�Sq$ (x, l $) # P aq$ l $.

Proof. We will use induction on the allowed number of segments in
the summands P.

The base of induction holds true; indeed |P|=1 means that P contains
just one segment; so we have (4.46) from (4.45). Now suppose that (4.46)
is true if the summation is over all polymers such that |P|�n; and we want
to prove it for the sum over all |P|�n+1. If P is such that P@Sq(x, l ) then
there exists a segment Sq$(x$, l $) of P connected to Sq(x, l ) and we can
organize the summation � (�n+1)

P over polymers |P|�n+1 connected to
Sq as follows

:
(�n+1)

P: P@Sq(x, l )

`(P) ea(P)� :
Sq $(x$, l $) @Sq(x, l )

`(Sq$(x$, l $)) eaq$ l $ :
(�n+1)

P % Sq $(x$, l $)

`(P*) ea(P*)

(4.47)

where P* is a collection (possibly empty) of polymers arising when
Sq$(x$, l $) is removed from P. We apply the inductive hypothesis to this last
sum. Decompose P into connected components and organize the last sum
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in (4.47) according to the number N of components of P* connected to
Sq$(x, l ). Then the r.h.s. of (4.48) is estimated as

:
(�n+1)

P % Sq$(x$, l $)

`(P*) ea(P*)�1+:
N

1
N ! \ :

(�n)

P� : P� @Sq$(x$, l $)

`(P� ) ea(P� )+
N

�eaq$ l $ (4.48)

(we use the symbol P� to denote possible components of P*) and finally

:
(�n+1)

P� : P� @Sq(x, l )

`(P) ea(P)� :
Sq $(x$, l $) @Sq(x, l )

`(Sq$(x$, l $)) e2aq $ l $<aq l (4.49)

by (4.45). K

A general remark is that from the cluster expansion point of view it is
not that important that anisotropic polymers have a segmental structure. It
is important that they are tree-like geometrical structures with various
types of statistical weights assigned to the tree elements. Some of these
element may have relatively small weights while the other may sum up to
a finite but large number. The additional idea is that the elements of the
tree alternate such that one always has an element with the small weight
to dominate the sum of the elements with the large weights. Such kind of
structures can be found in various situations including those not related to
the cluster expansion. (We thank the referee of the paper for this general
remark.)

The idea that tree like considerations are helpful when controlling the
convergence of the cluster expansions was, of course, very important
throughout this paper and our ``segmental'' polymers are convenient object
for its implementation. The same idea was used also in ref. [HZ]. In
Section 4.3, we use the same method, and it seems that Proposition 4.2 is
one of the simplest applications of the above idea.

A systematic study of more general, two dimensional ``segmental
polymer models'' (and models of ``abstract Pirogov�Sinai type'' [Z] with
segmental contours) is postponed to some future publication. In particular
we plan to deal systematically with phase transitions appearing in situa-
tions with no symmetry.
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